Lösung 3.4:7b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
According to the factor theorem, a polynomial that has the zeros <math>-1+i</math> and <math>-1-i</math> must contain the factors <math>z-(-1+i)</math> and <math>z-(-1-i)</math>. An example of such a polynomial is
According to the factor theorem, a polynomial that has the zeros <math>-1+i</math> and <math>-1-i</math> must contain the factors <math>z-(-1+i)</math> and <math>z-(-1-i)</math>. An example of such a polynomial is
-
{{Displayed math||<math>(z-(-1+i))(z-(-1-i)) = z^2+2z+2\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>(z-(-1+i))(z-(-1-i)) = z^2+2z+2\,\textrm{.}</math>}}
Note: If one wants to have all the polynomials which have only these zeros, the answer is
Note: If one wants to have all the polynomials which have only these zeros, the answer is
-
{{Displayed math||<math>C(z+1-i)^m(z+1+i)^n</math>}}
+
{{Abgesetzte Formel||<math>C(z+1-i)^m(z+1+i)^n</math>}}
where <math>C</math> is a non-zero constant and <math>m</math> and <math>n</math> are positive integers.
where <math>C</math> is a non-zero constant and <math>m</math> and <math>n</math> are positive integers.

Version vom 13:16, 10. Mär. 2009

According to the factor theorem, a polynomial that has the zeros \displaystyle -1+i and \displaystyle -1-i must contain the factors \displaystyle z-(-1+i) and \displaystyle z-(-1-i). An example of such a polynomial is

\displaystyle (z-(-1+i))(z-(-1-i)) = z^2+2z+2\,\textrm{.}


Note: If one wants to have all the polynomials which have only these zeros, the answer is

\displaystyle C(z+1-i)^m(z+1+i)^n

where \displaystyle C is a non-zero constant and \displaystyle m and \displaystyle n are positive integers.