Lösung 3.4:1a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| The numerator can be factorized using the formula for the difference of two squares to give <math>x^2-1=(x+1)(x-1)</math> and then we see that the numerator and denominator have a common factor which we can eliminate | The numerator can be factorized using the formula for the difference of two squares to give <math>x^2-1=(x+1)(x-1)</math> and then we see that the numerator and denominator have a common factor which we can eliminate | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1\,\textrm{.}</math>}} | 
Version vom 13:14, 10. Mär. 2009
The numerator can be factorized using the formula for the difference of two squares to give \displaystyle x^2-1=(x+1)(x-1) and then we see that the numerator and denominator have a common factor which we can eliminate
| \displaystyle \frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1\,\textrm{.} | 
 
		  