Lösung 3.3:3c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| If we take the minus sign out in front of the whole expression, | If we take the minus sign out in front of the whole expression, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>-\bigl(z^2+2iz-4z-1\bigr)\,,</math>}} | 
| and collect together the first-degree terms, | and collect together the first-degree terms, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>-\bigl(z^2+(-4+2i)z-1\bigr)\,,</math>}} | 
| we can then complete the square of the expression inside the outer bracket, | we can then complete the square of the expression inside the outer bracket, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| -\bigl(z^2+(-4+2i)z-1\bigr) | -\bigl(z^2+(-4+2i)z-1\bigr) | ||
| &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt]  | &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt]  | ||
Version vom 13:12, 10. Mär. 2009
If we take the minus sign out in front of the whole expression,
| \displaystyle -\bigl(z^2+2iz-4z-1\bigr)\,, | 
and collect together the first-degree terms,
| \displaystyle -\bigl(z^2+(-4+2i)z-1\bigr)\,, | 
we can then complete the square of the expression inside the outer bracket,
| \displaystyle \begin{align} -\bigl(z^2+(-4+2i)z-1\bigr) &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt] &= -(z-2+i)^2+4-4i\,\textrm{.} \end{align} | 
 
		  