Lösung 3.3:2e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we treat the expression <math>w=\frac{z+i}{z-i}</math> as an unknown, we have the equation
If we treat the expression <math>w=\frac{z+i}{z-i}</math> as an unknown, we have the equation
-
{{Displayed math||<math>w^2=-1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>w^2=-1\,\textrm{.}</math>}}
We know already that this equation has roots
We know already that this equation has roots
-
{{Displayed math||<math>w=\left\{\begin{align}
+
{{Abgesetzte Formel||<math>w=\left\{\begin{align}
-i\,,&\\[5pt]
-i\,,&\\[5pt]
i\,,&
i\,,&
Zeile 12: Zeile 12:
so <math>z</math> should satisfy one of the equation's
so <math>z</math> should satisfy one of the equation's
-
{{Displayed math||<math>\frac{z+i}{z-i}=-i\quad</math> or <math>\quad\frac{z+i}{z-i}=i\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{z+i}{z-i}=-i\quad</math> or <math>\quad\frac{z+i}{z-i}=i\,\textrm{.}</math>}}
We solve these equations one by one.
We solve these equations one by one.
Zeile 21: Zeile 21:
:Multiply both sides by <math>z-i</math>,
:Multiply both sides by <math>z-i</math>,
-
{{Displayed math||<math>z+i=-i(z-i)\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z+i=-i(z-i)\,\textrm{.}</math>}}
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
-
{{Displayed math||<math>z+iz=-1-i\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z+iz=-1-i\,\textrm{.}</math>}}
:This gives
:This gives
-
{{Displayed math||<math>z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}</math>}}
Zeile 36: Zeile 36:
:Multiply both sides by <math>z-i</math>,
:Multiply both sides by <math>z-i</math>,
-
{{Displayed math||<math>z+i=i(z-i)\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z+i=i(z-i)\,\textrm{.}</math>}}
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
-
{{Displayed math||<math>z-iz=1-i\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z-iz=1-i\,\textrm{.}</math>}}
:This gives
:This gives
-
{{Displayed math||<math>z = \frac{1-i}{1-i} = 1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z = \frac{1-i}{1-i} = 1\,\textrm{.}</math>}}
The solutions are therefore <math>z=-1</math> and <math>z=1\,</math>.
The solutions are therefore <math>z=-1</math> and <math>z=1\,</math>.

Version vom 13:12, 10. Mär. 2009

If we treat the expression \displaystyle w=\frac{z+i}{z-i} as an unknown, we have the equation

\displaystyle w^2=-1\,\textrm{.}

We know already that this equation has roots

\displaystyle w=\left\{\begin{align}

-i\,,&\\[5pt] i\,,& \end{align}\right.

so \displaystyle z should satisfy one of the equation's

\displaystyle \frac{z+i}{z-i}=-i\quad or \displaystyle \quad\frac{z+i}{z-i}=i\,\textrm{.}

We solve these equations one by one.


  • \displaystyle (z+i)/(z-i)=-i:
Multiply both sides by \displaystyle z-i,
\displaystyle z+i=-i(z-i)\,\textrm{.}
Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z+iz=-1-i\,\textrm{.}
This gives
\displaystyle z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}


  • \displaystyle (z+i)/(z-i)=i:
Multiply both sides by \displaystyle z-i,
\displaystyle z+i=i(z-i)\,\textrm{.}
Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z-iz=1-i\,\textrm{.}
This gives
\displaystyle z = \frac{1-i}{1-i} = 1\,\textrm{.}


The solutions are therefore \displaystyle z=-1 and \displaystyle z=1\,.