Lösung 3.2:1c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
By calculation, we obtain | By calculation, we obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>2z+w = 2(2+i)+(2+3i) = 2\cdot 2 + 2 + (2+3)i = 6+5i</math>}} |
and we can mark this point on the complex plane. | and we can mark this point on the complex plane. |
Version vom 13:07, 10. Mär. 2009
By calculation, we obtain
\displaystyle 2z+w = 2(2+i)+(2+3i) = 2\cdot 2 + 2 + (2+3)i = 6+5i |
and we can mark this point on the complex plane.
If we treat \displaystyle z and \displaystyle w as vectors, then \displaystyle 2z is the vector which has the same direction as \displaystyle z, but is twice as long.
We add \displaystyle w to this vector and get \displaystyle 2z+w.