Lösung 3.1:4c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we subtract <math>2z</math> from both sides, | If we subtract <math>2z</math> from both sides, | ||
- | {{ | + | {{Abgesetzte Formel||<math>iz+2-2z=-3</math>}} |
and then subtract <math>2</math> from both sides, we have <math>z</math> terms left only on the left-hand side, | and then subtract <math>2</math> from both sides, we have <math>z</math> terms left only on the left-hand side, | ||
- | {{ | + | {{Abgesetzte Formel||<math>iz-2z=-3-2\,\textrm{.}</math>}} |
After taking out a factor <math>z</math> from the left-hand side, | After taking out a factor <math>z</math> from the left-hand side, | ||
- | {{ | + | {{Abgesetzte Formel||<math>(i-2)z=-5\,,</math>}} |
we obtain, after dividing by <math>-2+i</math>, | we obtain, after dividing by <math>-2+i</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
z &= \frac{-5}{-2+i} | z &= \frac{-5}{-2+i} | ||
= \frac{-5(-2-i)}{(-2+i)(-2-i)} | = \frac{-5(-2-i)}{(-2+i)(-2-i)} | ||
Zeile 23: | Zeile 23: | ||
A quick check shows that <math>z=2+i</math> satisfies the original equation, | A quick check shows that <math>z=2+i</math> satisfies the original equation, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\text{LHS} &= iz+2 = i(2+i)+2 = 2i-1+2 = 1+2i\,,\\[5pt] | \text{LHS} &= iz+2 = i(2+i)+2 = 2i-1+2 = 1+2i\,,\\[5pt] | ||
\text{RHS} &= 2z-3 = 2(2+i)-3 = 4+2i-3 = 1+2i\,\textrm{.} | \text{RHS} &= 2z-3 = 2(2+i)-3 = 4+2i-3 = 1+2i\,\textrm{.} | ||
\end{align}</math>}} | \end{align}</math>}} |
Version vom 13:06, 10. Mär. 2009
If we subtract \displaystyle 2z from both sides,
\displaystyle iz+2-2z=-3 |
and then subtract \displaystyle 2 from both sides, we have \displaystyle z terms left only on the left-hand side,
\displaystyle iz-2z=-3-2\,\textrm{.} |
After taking out a factor \displaystyle z from the left-hand side,
\displaystyle (i-2)z=-5\,, |
we obtain, after dividing by \displaystyle -2+i,
\displaystyle \begin{align}
z &= \frac{-5}{-2+i} = \frac{-5(-2-i)}{(-2+i)(-2-i)} = \frac{(-5)\cdot(-2)-5\cdot(-i)}{(-2)^2-i^2}\\[5pt] &= \frac{10+5i}{4+1} = \frac{10+5i}{5} = 2+i\,\textrm{.}\end{align} |
A quick check shows that \displaystyle z=2+i satisfies the original equation,
\displaystyle \begin{align}
\text{LHS} &= iz+2 = i(2+i)+2 = 2i-1+2 = 1+2i\,,\\[5pt] \text{RHS} &= 2z-3 = 2(2+i)-3 = 4+2i-3 = 1+2i\,\textrm{.} \end{align} |