Lösung 3.1:1e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| A suitable first step can be to work out the square term, <math>(2-i)^2</math>, by expanding it, | A suitable first step can be to work out the square term, <math>(2-i)^2</math>, by expanding it, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| (2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt] | (2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt] | ||
| &= 4-4i+i^2\\[5pt] | &= 4-4i+i^2\\[5pt] | ||
| Zeile 10: | Zeile 10: | ||
| After that, we calculate the remaining product, | After that, we calculate the remaining product, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| (1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt] | (1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt] | ||
| &= 3-4i+3i-4i^2\\[5pt] | &= 3-4i+3i-4i^2\\[5pt] | ||
Version vom 13:05, 10. Mär. 2009
A suitable first step can be to work out the square term, \displaystyle (2-i)^2, by expanding it,
| \displaystyle \begin{align} (2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt] &= 4-4i+i^2\\[5pt] &= 4-4i-1\\[5pt] &= 3-4i\,\textrm{.} \end{align} | 
After that, we calculate the remaining product,
| \displaystyle \begin{align} (1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt] &= 3-4i+3i-4i^2\\[5pt] &= 3+(-4+3)i-4\cdot (-1)\\[5pt] &= 3-i+4\\[5pt] &= 7-i\,\textrm{.} \end{align} | 
 
		  