Lösung 2.3:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we use the definition of <math>\tan x</math> and write the integral as
If we use the definition of <math>\tan x</math> and write the integral as
-
{{Displayed math||<math>\int\tan x\,dx = \int\frac{\sin x}{\cos x}\,dx</math>}}
+
{{Abgesetzte Formel||<math>\int\tan x\,dx = \int\frac{\sin x}{\cos x}\,dx</math>}}
we see that the numerator <math>\sin x</math> is the derivative of the denominator (apart from the minus sign). Hence, the substitution <math>u=\cos x</math> will work,
we see that the numerator <math>\sin x</math> is the derivative of the denominator (apart from the minus sign). Hence, the substitution <math>u=\cos x</math> will work,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\int\frac{\sin x}{\cos x}\,dx
\int\frac{\sin x}{\cos x}\,dx
&= \left\{\begin{align}
&= \left\{\begin{align}

Version vom 13:04, 10. Mär. 2009

If we use the definition of \displaystyle \tan x and write the integral as

\displaystyle \int\tan x\,dx = \int\frac{\sin x}{\cos x}\,dx

we see that the numerator \displaystyle \sin x is the derivative of the denominator (apart from the minus sign). Hence, the substitution \displaystyle u=\cos x will work,

\displaystyle \begin{align}

\int\frac{\sin x}{\cos x}\,dx &= \left\{\begin{align} u &= \cos x\\[5pt] du &= (\cos x)'\,dx = -\sin x\,dx \end{align}\right\}\\[5pt] &= -\int\frac{du}{u}\\[5pt] &= -\ln |u| + C\\[5pt] &= -\ln |\cos x| + C\,\textrm{.} \end{align}


Note: \displaystyle -\ln \left| \cos x \right|+C is only a primitive function in intervals in which \displaystyle \cos x\ne 0.