Lösung 2.3:1b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we look at the formula for integration by parts,
If we look at the formula for integration by parts,
-
{{Displayed math||<math>\int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,</math>}}
+
{{Abgesetzte Formel||<math>\int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,</math>}}
we see that if we choose <math>f(x)=\sin x</math> and <math>g(x)=x+1</math>, then the factor <math>g(x)</math> will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for <math>f(x)</math> (which we can) and that we can then integrate it. Let's try!
we see that if we choose <math>f(x)=\sin x</math> and <math>g(x)=x+1</math>, then the factor <math>g(x)</math> will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for <math>f(x)</math> (which we can) and that we can then integrate it. Let's try!
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\int (x+1)\sin x\,dx
\int (x+1)\sin x\,dx
&= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt]
&= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt]

Version vom 13:03, 10. Mär. 2009

If we look at the formula for integration by parts,

\displaystyle \int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,

we see that if we choose \displaystyle f(x)=\sin x and \displaystyle g(x)=x+1, then the factor \displaystyle g(x) will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for \displaystyle f(x) (which we can) and that we can then integrate it. Let's try!

\displaystyle \begin{align}

\int (x+1)\sin x\,dx &= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt] &= -(x+1)\cos x + \int \cos x\,dx\\[5pt] &= -(x+1)\cos x + \sin x + C\,\textrm{.} \end{align}