Lösung 2.3:1b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			K   | 
				K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel))  | 
			||
| Zeile 1: | Zeile 1: | ||
If we look at the formula for integration by parts,  | If we look at the formula for integration by parts,  | ||
| - | {{  | + | {{Abgesetzte Formel||<math>\int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,</math>}}  | 
we see that if we choose <math>f(x)=\sin x</math> and <math>g(x)=x+1</math>, then the factor <math>g(x)</math> will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for <math>f(x)</math> (which we can) and that we can then integrate it. Let's try!  | we see that if we choose <math>f(x)=\sin x</math> and <math>g(x)=x+1</math>, then the factor <math>g(x)</math> will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for <math>f(x)</math> (which we can) and that we can then integrate it. Let's try!  | ||
| - | {{  | + | {{Abgesetzte Formel||<math>\begin{align}  | 
\int (x+1)\sin x\,dx  | \int (x+1)\sin x\,dx  | ||
&= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt]   | &= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt]   | ||
Version vom 13:03, 10. Mär. 2009
If we look at the formula for integration by parts,
| \displaystyle \int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,, | 
we see that if we choose \displaystyle f(x)=\sin x and \displaystyle g(x)=x+1, then the factor \displaystyle g(x) will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for \displaystyle f(x) (which we can) and that we can then integrate it. Let's try!
| \displaystyle \begin{align}
 \int (x+1)\sin x\,dx &= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt] &= -(x+1)\cos x + \int \cos x\,dx\\[5pt] &= -(x+1)\cos x + \sin x + C\,\textrm{.} \end{align}  | 
