Lösung 2.3:1a
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The formula for integration by parts reads | The formula for integration by parts reads | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,</math>}} |
where <math>F(x)</math> is a primitive function of <math>f(x)</math> and <math>g'(x)</math> is a derivative of <math>g(x)</math>. | where <math>F(x)</math> is a primitive function of <math>f(x)</math> and <math>g'(x)</math> is a derivative of <math>g(x)</math>. | ||
Zeile 10: | Zeile 10: | ||
In the integral | In the integral | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int 2xe^{-x}\,dx\,,</math>}} |
it can seem appropriate to choose <math>f(x)=e^{-x}</math> and <math>g(x) = 2x</math>, because then <math>g'(x) = 2</math> and we have only <math>F(x) = -e^{-x}</math> left, | it can seem appropriate to choose <math>f(x)=e^{-x}</math> and <math>g(x) = 2x</math>, because then <math>g'(x) = 2</math> and we have only <math>F(x) = -e^{-x}</math> left, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int 2x\cdot e^{-x}\,dx | \int 2x\cdot e^{-x}\,dx | ||
&= 2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx\\[5pt] | &= 2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx\\[5pt] | ||
Zeile 22: | Zeile 22: | ||
It remains only to integrate <math>e^{-x}</math> and we are finished, | It remains only to integrate <math>e^{-x}</math> and we are finished, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\phantom{\int 2x\cdot e^{-x}\,dx}{} | \phantom{\int 2x\cdot e^{-x}\,dx}{} | ||
&= \rlap{-2xe^{-x} + 2\bigl(-e^{-x}\bigr) + C}\phantom{2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx}\\[5pt] | &= \rlap{-2xe^{-x} + 2\bigl(-e^{-x}\bigr) + C}\phantom{2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx}\\[5pt] |
Version vom 13:03, 10. Mär. 2009
The formula for integration by parts reads
\displaystyle \int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,, |
where \displaystyle F(x) is a primitive function of \displaystyle f(x) and \displaystyle g'(x) is a derivative of \displaystyle g(x).
If we are to use integration by parts, the integrand has to be divided up into two factors, a factor \displaystyle f(x) which we integrate and a factor \displaystyle g(x) which we differentiate. It is only when the product \displaystyle F(x)g'(x) becomes simpler than \displaystyle f(x)g(x) that there is any point in integrating by parts.
In the integral
\displaystyle \int 2xe^{-x}\,dx\,, |
it can seem appropriate to choose \displaystyle f(x)=e^{-x} and \displaystyle g(x) = 2x, because then \displaystyle g'(x) = 2 and we have only \displaystyle F(x) = -e^{-x} left,
\displaystyle \begin{align}
\int 2x\cdot e^{-x}\,dx &= 2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx\\[5pt] &= -2xe^{-x} + 2\int e^{-x}\,dx\,\textrm{.} \end{align} |
It remains only to integrate \displaystyle e^{-x} and we are finished,
\displaystyle \begin{align}
\phantom{\int 2x\cdot e^{-x}\,dx}{} &= \rlap{-2xe^{-x} + 2\bigl(-e^{-x}\bigr) + C}\phantom{2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx}\\[5pt] &= -2xe^{-x} - 2e^{-x} + C\\[5pt] &= -2(x+1)e^{-x} + C\,\textrm{.} \end{align} |