Lösung 2.2:4d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The integral can be simplified by a so-called polynomial division. We add and take away 1 in the numerator and can thus eliminate the <math>x^2</math>-term from the numerator | The integral can be simplified by a so-called polynomial division. We add and take away 1 in the numerator and can thus eliminate the <math>x^2</math>-term from the numerator | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{x^2}{x^{2}+1} = \frac{x^2+1-1}{x^2+1} = \frac{x^2+1}{x^2+1} - \frac{1}{x^2+1} = 1-\frac{1}{x^2+1}\,\textrm{.}</math>}} |
Thus, we have | Thus, we have | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int\frac{x^2}{x^2+1}\,dx = \int\Bigl(1-\frac{1}{x^2+1} \Bigr)\,dx = x-\arctan x+C\,\textrm{.}</math>}} |
Version vom 13:03, 10. Mär. 2009
The integral can be simplified by a so-called polynomial division. We add and take away 1 in the numerator and can thus eliminate the \displaystyle x^2-term from the numerator
\displaystyle \frac{x^2}{x^{2}+1} = \frac{x^2+1-1}{x^2+1} = \frac{x^2+1}{x^2+1} - \frac{1}{x^2+1} = 1-\frac{1}{x^2+1}\,\textrm{.} |
Thus, we have
\displaystyle \int\frac{x^2}{x^2+1}\,dx = \int\Bigl(1-\frac{1}{x^2+1} \Bigr)\,dx = x-\arctan x+C\,\textrm{.} |