Lösung 2.1:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we multiply the factors in the integrand together and use the power laws,
If we multiply the factors in the integrand together and use the power laws,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\int e^{2x}\bigl(e^x+1\bigr)\,dx
\int e^{2x}\bigl(e^x+1\bigr)\,dx
&= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt]
&= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt]
Zeile 11: Zeile 11:
<math>a</math> is a constant. The indefinite integral is therefore
<math>a</math> is a constant. The indefinite integral is therefore
-
{{Displayed math||<math>\int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,,</math>}}
+
{{Abgesetzte Formel||<math>\int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,,</math>}}
where <math>C</math> is an arbitrary constant.
where <math>C</math> is an arbitrary constant.

Version vom 12:59, 10. Mär. 2009

If we multiply the factors in the integrand together and use the power laws,

\displaystyle \begin{align}

\int e^{2x}\bigl(e^x+1\bigr)\,dx &= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] &= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt] &= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,, \end{align}

we obtain a standard integral with two terms of the type \displaystyle e^{ax}, where \displaystyle a is a constant. The indefinite integral is therefore

\displaystyle \int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,,

where \displaystyle C is an arbitrary constant.