Lösung 2.1:2b
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
There is no ready made standard formula for a primitive function to our integrand, but if we expand | There is no ready made standard formula for a primitive function to our integrand, but if we expand | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int\limits_{-1}^{2} (x-2)(x+1)\,dx | \int\limits_{-1}^{2} (x-2)(x+1)\,dx | ||
&= \int\limits_{-1}^{2} (x^2+x-2x-2)\,dx\\[5pt] | &= \int\limits_{-1}^{2} (x^2+x-2x-2)\,dx\\[5pt] | ||
Zeile 9: | Zeile 9: | ||
and write the last integral as | and write the last integral as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx</math>}} |
we see that the integrand consists of three terms of the type <math>x^n</math> and we can directly write down a primitive function, | we see that the integrand consists of three terms of the type <math>x^n</math> and we can directly write down a primitive function, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx | \int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx | ||
&= \Bigl[\ \frac{x^3}{3} - \frac{x^2}{2} - 2\cdot\frac{x}{1}\ \Bigr]_{-1}^{2}\\[5pt] | &= \Bigl[\ \frac{x^3}{3} - \frac{x^2}{2} - 2\cdot\frac{x}{1}\ \Bigr]_{-1}^{2}\\[5pt] |
Version vom 12:58, 10. Mär. 2009
There is no ready made standard formula for a primitive function to our integrand, but if we expand
\displaystyle \begin{align}
\int\limits_{-1}^{2} (x-2)(x+1)\,dx &= \int\limits_{-1}^{2} (x^2+x-2x-2)\,dx\\[5pt] &= \int\limits_{-1}^{2} (x^2-x-2)\,dx \end{align} |
and write the last integral as
\displaystyle \int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx |
we see that the integrand consists of three terms of the type \displaystyle x^n and we can directly write down a primitive function,
\displaystyle \begin{align}
\int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx &= \Bigl[\ \frac{x^3}{3} - \frac{x^2}{2} - 2\cdot\frac{x}{1}\ \Bigr]_{-1}^{2}\\[5pt] &= \frac{2^3}{3} - \frac{2^2}{2} - 2\cdot\frac{2}{1} - \Bigl(\frac{(-1)^3}{3} - \frac{(-1)^2}{2} - 2\cdot\frac{(-1)}{1}\Bigr)\\[5pt] &= \frac{8}{3} - \frac{4}{2} - 4 - \Bigl(-\frac{1}{3}-\frac{1}{2}+2\Bigr)\\[5pt] &= \frac{16-12-24+2+3-12}{6}\\[5pt] &= -\frac{27}{6}\\[5pt] &= -\frac{9}{2}\,\textrm{.} \end{align} |