Lösung 2.1:1a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 5: Zeile 5:
Because the region is a rectangle, we can determine its area directly and obtain
Because the region is a rectangle, we can determine its area directly and obtain
-
{{Displayed math||<math>\int\limits_{-1}^{2} 2\,dx = \text{(base)}\cdot\text{(height)} = 3\cdot 2 = 6\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\int\limits_{-1}^{2} 2\,dx = \text{(base)}\cdot\text{(height)} = 3\cdot 2 = 6\,\textrm{.}</math>}}

Version vom 12:57, 10. Mär. 2009

The value of the integral can be interpreted as the area under the graph \displaystyle y=2 from \displaystyle x=-1\ to \displaystyle x=2.

Because the region is a rectangle, we can determine its area directly and obtain

\displaystyle \int\limits_{-1}^{2} 2\,dx = \text{(base)}\cdot\text{(height)} = 3\cdot 2 = 6\,\textrm{.}