Lösung 1.2:3e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
At first sight, the expression looks like “''e'' raised to something” and therefore we differentiate using the chain rule, | At first sight, the expression looks like “''e'' raised to something” and therefore we differentiate using the chain rule, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}} = |
e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x^2}\bigr)'\,\textrm{.}</math>}} | e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x^2}\bigr)'\,\textrm{.}</math>}} | ||
Then, we differentiate “sine of something”, | Then, we differentiate “sine of something”, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
e^{\sin x^2}\cdot \bigl( \sin \bbox[#FFEEAA;,1.5pt]{x^2} \bigr)' | e^{\sin x^2}\cdot \bigl( \sin \bbox[#FFEEAA;,1.5pt]{x^2} \bigr)' | ||
&= e^{\sin x^2}\cdot \cos\bbox[#FFEEAA;,1.5pt]{x^2} \cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x^2}\bigr)'\\[5pt] | &= e^{\sin x^2}\cdot \cos\bbox[#FFEEAA;,1.5pt]{x^2} \cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x^2}\bigr)'\\[5pt] | ||
&= e^{\sin x^2}\cdot \cos x^2\cdot 2x\,\textrm{.} | &= e^{\sin x^2}\cdot \cos x^2\cdot 2x\,\textrm{.} | ||
\end{align}</math>}} | \end{align}</math>}} |
Version vom 12:54, 10. Mär. 2009
At first sight, the expression looks like “e raised to something” and therefore we differentiate using the chain rule,
\displaystyle \frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}} =
e^{\bbox[#FFEEAA;,1.5pt]{\sin x^2}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x^2}\bigr)'\,\textrm{.} |
Then, we differentiate “sine of something”,
\displaystyle \begin{align}
e^{\sin x^2}\cdot \bigl( \sin \bbox[#FFEEAA;,1.5pt]{x^2} \bigr)' &= e^{\sin x^2}\cdot \cos\bbox[#FFEEAA;,1.5pt]{x^2} \cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x^2}\bigr)'\\[5pt] &= e^{\sin x^2}\cdot \cos x^2\cdot 2x\,\textrm{.} \end{align} |