Lösung 1.1:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| We differentiate term by term, | We differentiate term by term, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt]  | f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt]  | ||
| &= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt] | &= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt] | ||
Version vom 12:50, 10. Mär. 2009
We differentiate term by term,
| \displaystyle \begin{align} f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(e^x-\ln x\bigr)\\[5pt] &= \frac{d}{dx}\,e^{x} - \frac{d}{dx}\,\ln x\\[5pt] &= e^{x}-\frac{1}{x}\,\textrm{.} \end{align} | 
Note: Because \displaystyle \ln x is not defined for \displaystyle x\le 0 we assume implicitly that \displaystyle x > 0.
 
		  