2.3 Partielle Integration
Aus Online Mathematik Brückenkurs 2
K (Robot: Automated text replacement (-{{Fristående formel +{{Displayed math)) |
(Edited to align more closely with typical UK approach, depending less closely on idea of primitive fn.) |
||
Zeile 23: | Zeile 23: | ||
== Integration by parts == | == Integration by parts == | ||
- | To integrate products, one sometimes can make use of a method known as ''integration by parts''. The method is based on the reverse use of the rules for differentiation of products. If <math> | + | To integrate products, one sometimes can make use of a method known as ''integration by parts''. The method is based on the reverse use of the rules for differentiation of products. If <math>u</math> and <math>v</math> are two differentiable functions then the rule for products gives |
- | {{Displayed math||<math>D\,(\, | + | {{Displayed math||<math>D\,(\,u\, v) = u^{\,\prime} \, v + u \, v'\,\mbox{.}</math>}} |
Now if one integrates both sides one gets | Now if one integrates both sides one gets | ||
- | {{Displayed math||<math> | + | {{Displayed math||<math>u \, v = \int (\,u^{\,\prime} \, v + u \, v'\,)\,dx = \int u^{\,\prime} \, v\,dx + \int u\, v'\,dx</math>}} |
- | + | which, after re-ordering, becomes the formula for integration by parts. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
<div class="regel"> | <div class="regel"> | ||
'''Integration by parts:''' | '''Integration by parts:''' | ||
- | {{Displayed math||<math>\int | + | {{Displayed math||<math>\int u \, v'\,dx = u \, v - \int u^{\,\prime} \, v\,dx\,\mbox{.}</math>}} |
</div> | </div> | ||
- | This means in practice that one integrates a product of functions by calling one factor <math> | + | This means in practice that one integrates a product of functions by calling one factor <math>u</math> and the other <math>v'</math>, and then replaces the integral <math>\,\int u \, v'\,dx\ </math>, with the integral <math>\,\int u^{\,\prime} \, v\,dx\,\mbox{,}\ </math>, which one hopes will be easier. Here, <math>v</math> is any antiderivative (primitive function) of <math>v'</math> (by preference, the simplest) and <math>u'</math> is the derivative of <math>u</math>. |
- | It is important to note that the method does not always lead to an integral | + | It is important to note that the method does not always lead to an integral that is easier than the original. It may also be crucial how one chooses the functions <math>u</math> and <math>v'</math>, as the following example shows. |
<div class="exempel"> | <div class="exempel"> | ||
''' Example 1''' | ''' Example 1''' | ||
- | Determine the integral <math>\,\int x \ | + | Determine the integral <math>\,\int x \, \sin x \, dx\,</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | If one chooses <math> | + | If one chooses <math>u=\sin x</math> and <math>v'=x</math> one gets <math>u'=\cos x</math> and <math>v=x^2/2</math>, and the formula for integration by parts gives |
- | {{Displayed math||<math>\int x \ | + | {{Displayed math||<math>\int x \, \sin x \, dx = \frac{x^2}{2} \, \sin x - \int \frac{x^2}{2} \, \cos x \, dx\,\mbox{.}</math>}} |
The new integral on the right-hand side in this case is not easier than the original integral. | The new integral on the right-hand side in this case is not easier than the original integral. | ||
- | If, instead, one chooses <math> | + | If, instead, one chooses <math>u=x</math> and <math>v'=\sin x</math> then <math>u'=1</math> and <math>v=-\cos x</math>, and |
- | {{Displayed math||<math>\int x \ | + | {{Displayed math||<math>\int x \, \sin x \, dx = - x \, \cos x - \int - 1 \times \cos x \, dx = - x\cos x + \sin x + C\,\mbox{.}</math>}} |
</div> | </div> | ||
Zeile 67: | Zeile 63: | ||
''' Example 2''' | ''' Example 2''' | ||
- | Determine the integral <math>\ \int x^2 \ | + | Determine the integral <math>\ \int x^2 \, \ln x \, dx\,</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | Put <math> | + | Put <math>u=\ln x</math> and <math>v'=x^2</math>, since differentiation eliminates the logarithm when we carry out an integration by parts: <math>u'=1/x</math> and <math>v=x^3/3</math>. This gives us |
- | {{Displayed math||<math>\begin{align*}\int x^2 \ | + | {{Displayed math||<math>\begin{align*}\int x^2 \, \ln x \, dx &= \frac {x^3}{3} \, \ln x - \int \frac{x^3}{3} \, \frac{1}{x} \, dx = \frac {x^3}{3} \, \ln x - \frac{1}{3} \int x^2 \, dx\\[4pt] &= \frac{x^3}{3} \, \ln x - \frac{1}{3} \, \frac{x^3}{3} + C = \tfrac{1}{3}x^3 ( \ln x - \tfrac{1}{3} ) + C\,\mbox{.}\end{align*}</math>}} |
</div> | </div> | ||
Zeile 82: | Zeile 78: | ||
<br> | <br> | ||
<br> | <br> | ||
- | Put | + | Put <math>u=x^2</math> and <math>v'=e^x</math>, which gives <math>u'=2x</math> and <math>v=e^x</math>; integration by parts gives |
{{Displayed math||<math> \int x^2 e^x \, dx = x^2 e^x - \int 2x\,e^x \, dx\,\mbox{.}</math>}} | {{Displayed math||<math> \int x^2 e^x \, dx = x^2 e^x - \int 2x\,e^x \, dx\,\mbox{.}</math>}} | ||
- | This requires further integration by parts to solve the new integral <math>\,\int 2x\,e^x \, dx</math>. We choose in this case <math> | + | This requires further integration by parts to solve the new integral <math>\,\int 2x\,e^x \, dx</math>. We choose in this case <math>u=2x</math> and <math>v'=e^x</math>, which gives <math>u'=2</math> and <math>v=e^x</math>: |
{{Displayed math||<math>\int 2x\,e^x \, dx = 2x\,e^x - \int 2 e^x \, dx = 2x\,e^x - 2 e^x + C\,\mbox{.}</math>}} | {{Displayed math||<math>\int 2x\,e^x \, dx = 2x\,e^x - \int 2 e^x \, dx = 2x\,e^x - 2 e^x + C\,\mbox{.}</math>}} | ||
Zeile 102: | Zeile 98: | ||
<br> | <br> | ||
<br> | <br> | ||
- | In | + | In the first integration by parts, we have chosen to integrate the factor <math>e^x</math> and differentiate the factor <math>\cos x</math>, |
- | {{Displayed math||<math>\begin{align*}\int e^x \cos x \, dx &= e^x \ | + | {{Displayed math||<math>\begin{align*}\int e^x \cos x \, dx &= e^x \, \cos x - \int e^x \,(-\sin x) \, dx\\[10pt] &= e^x \cos x + \int e^x \sin x \, dx\,\mbox{.}\end{align*}</math>}} |
The result of this is that we essentially have replaced the factor <math>\cos x</math> by <math>\sin x</math> in the integral. If we therefore use integration by parts once again (integrate the <math>e^x</math> and differentiate the <math>\sin x</math>) we get | The result of this is that we essentially have replaced the factor <math>\cos x</math> by <math>\sin x</math> in the integral. If we therefore use integration by parts once again (integrate the <math>e^x</math> and differentiate the <math>\sin x</math>) we get | ||
Zeile 129: | Zeile 125: | ||
The integral can be rewritten as | The integral can be rewritten as | ||
- | {{Displayed math||<math>\int_{0}^{1} \frac{2x}{e^x} \, dx = \int_{0}^{1} 2x \ | + | {{Displayed math||<math>\int_{0}^{1} \frac{2x}{e^x} \, dx = \int_{0}^{1} 2x \, e^{-x} \, dx\,\mbox{.}</math>}} |
- | Substitute <math> | + | Substitute <math>u=2x</math> and <math>v'=e^{-x}</math>, and integrate by parts |
- | {{Displayed math||<math>\begin{align*}\int_{0}^{1} 2x \ | + | {{Displayed math||<math>\begin{align*}\int_{0}^{1} 2x \, e^{-x} \, dx &= \Bigl[\,-2x\,e^{-x}\,\Bigr]_{0}^{1} + \int_{0}^{1} 2 e^{-x}\,dx\\[4pt] &= \Bigl[\,-2x e^{-x}\,\Bigr]_{0}^{1} + \Bigl[\,-2 e^{-x}\, \Bigr]_{0}^{1}\\[4pt] &= (-2 \, e^{-1}) - 0 + (- 2\, e^{-1}) - (-2)\\[4pt] &= - \frac{2}{e} - \frac{2}{e} + 2 = 2 - \frac{4}{e}\,\mbox{.}\end{align*}</math>}} |
</div> | </div> | ||
Zeile 143: | Zeile 139: | ||
<br> | <br> | ||
<br> | <br> | ||
- | We start by performing a | + | We start by performing a substitution <math>u=\sqrt{x}</math> which gives <math>du=dx/2\sqrt{x} = dx/2u</math>, that is, <math>dx = 2u\,du\,</math>, |
- | {{Displayed math||<math>\int \ln \sqrt{x} \, dx = \int \ln u \ | + | {{Displayed math||<math>\int \ln \sqrt{x} \, dx = \int \ln u \times 2u \, du\,\mbox{.}</math>}} |
- | Then we integrate by parts. Put <math>f= | + | Then we integrate by parts. Put <math>f=\ln u</math> <math>g'=2u</math>, which gives |
- | {{Displayed math||<math>\begin{align*}\int \ln u \ | + | {{Displayed math||<math>\begin{align*}\int \ln u \times 2u \, du &= u^2 \ln u - \int u^2 \, \frac{1}{u} \, du = u^2 \ln u - \int u\, du\\[4pt] &= u^2 \ln u - \frac{u^2}{2} + C = x \ln \sqrt{x} - \frac {x}{2} + C\\[4pt] &= x \bigl( \ln \sqrt{x} - \tfrac{1}{2} \bigr) + C\,\mbox{.}\end{align*}</math>}} |
- | ''Note.'' An alternative approach is to rewrite the initial integrand as <math>\ln\sqrt{x} = \tfrac{1}{2}\ln x</math> and then integrate by parts the product <math>\tfrac{1}{2}\ | + | ''Note.'' An alternative approach is to rewrite the initial integrand as <math>\ln\sqrt{x} = \tfrac{1}{2}\ln x</math> and then integrate by parts the product <math>\tfrac{1}{2}\,\ln x</math>. |
</div> | </div> |
Version vom 15:05, 7. Jan. 2009
Theory | Exercises |
Contents:
- Integration by parts.
Learning outcomes:
After this section, you will have learned to:
- Understand the derivation of the formula for integration by parts.
- Solve problems about integration that require integration by parts, followed by a substitution (or vice versa).
Integration by parts
To integrate products, one sometimes can make use of a method known as integration by parts. The method is based on the reverse use of the rules for differentiation of products. If \displaystyle u and \displaystyle v are two differentiable functions then the rule for products gives
\displaystyle D\,(\,u\, v) = u^{\,\prime} \, v + u \, v'\,\mbox{.} |
Now if one integrates both sides one gets
\displaystyle u \, v = \int (\,u^{\,\prime} \, v + u \, v'\,)\,dx = \int u^{\,\prime} \, v\,dx + \int u\, v'\,dx |
which, after re-ordering, becomes the formula for integration by parts.
Integration by parts:
\displaystyle \int u \, v'\,dx = u \, v - \int u^{\,\prime} \, v\,dx\,\mbox{.} |
This means in practice that one integrates a product of functions by calling one factor \displaystyle u and the other \displaystyle v', and then replaces the integral \displaystyle \,\int u \, v'\,dx\ , with the integral \displaystyle \,\int u^{\,\prime} \, v\,dx\,\mbox{,}\ , which one hopes will be easier. Here, \displaystyle v is any antiderivative (primitive function) of \displaystyle v' (by preference, the simplest) and \displaystyle u' is the derivative of \displaystyle u.
It is important to note that the method does not always lead to an integral that is easier than the original. It may also be crucial how one chooses the functions \displaystyle u and \displaystyle v', as the following example shows.
Example 1
Determine the integral \displaystyle \,\int x \, \sin x \, dx\,.
If one chooses \displaystyle u=\sin x and \displaystyle v'=x one gets \displaystyle u'=\cos x and \displaystyle v=x^2/2, and the formula for integration by parts gives
\displaystyle \int x \, \sin x \, dx = \frac{x^2}{2} \, \sin x - \int \frac{x^2}{2} \, \cos x \, dx\,\mbox{.} |
The new integral on the right-hand side in this case is not easier than the original integral.
If, instead, one chooses \displaystyle u=x and \displaystyle v'=\sin x then \displaystyle u'=1 and \displaystyle v=-\cos x, and
\displaystyle \int x \, \sin x \, dx = - x \, \cos x - \int - 1 \times \cos x \, dx = - x\cos x + \sin x + C\,\mbox{.} |
Example 2
Determine the integral \displaystyle \ \int x^2 \, \ln x \, dx\,.
Put \displaystyle u=\ln x and \displaystyle v'=x^2, since differentiation eliminates the logarithm when we carry out an integration by parts: \displaystyle u'=1/x and \displaystyle v=x^3/3. This gives us
\displaystyle \begin{align*}\int x^2 \, \ln x \, dx &= \frac {x^3}{3} \, \ln x - \int \frac{x^3}{3} \, \frac{1}{x} \, dx = \frac {x^3}{3} \, \ln x - \frac{1}{3} \int x^2 \, dx\\[4pt] &= \frac{x^3}{3} \, \ln x - \frac{1}{3} \, \frac{x^3}{3} + C = \tfrac{1}{3}x^3 ( \ln x - \tfrac{1}{3} ) + C\,\mbox{.}\end{align*} |
Example 3
Determine the integral \displaystyle \ \int x^2 e^x \, dx\,.
Put \displaystyle u=x^2 and \displaystyle v'=e^x, which gives \displaystyle u'=2x and \displaystyle v=e^x; integration by parts gives
\displaystyle \int x^2 e^x \, dx = x^2 e^x - \int 2x\,e^x \, dx\,\mbox{.} |
This requires further integration by parts to solve the new integral \displaystyle \,\int 2x\,e^x \, dx. We choose in this case \displaystyle u=2x and \displaystyle v'=e^x, which gives \displaystyle u'=2 and \displaystyle v=e^x:
\displaystyle \int 2x\,e^x \, dx = 2x\,e^x - \int 2 e^x \, dx = 2x\,e^x - 2 e^x + C\,\mbox{.} |
The original integral thus becomes
\displaystyle \int x^2 e^x \, dx = x^2 e^x - 2x\,e^x + 2 e^x + C\,\mbox{.} |
Example 4
Determine the integral \displaystyle \ \int e^x \cos x \, dx\,.
In the first integration by parts, we have chosen to integrate the factor \displaystyle e^x and differentiate the factor \displaystyle \cos x,
\displaystyle \begin{align*}\int e^x \cos x \, dx &= e^x \, \cos x - \int e^x \,(-\sin x) \, dx\\[10pt] &= e^x \cos x + \int e^x \sin x \, dx\,\mbox{.}\end{align*} |
The result of this is that we essentially have replaced the factor \displaystyle \cos x by \displaystyle \sin x in the integral. If we therefore use integration by parts once again (integrate the \displaystyle e^x and differentiate the \displaystyle \sin x) we get
\displaystyle \int e^x \sin x \, dx = e^x \sin x - \int e^x \cos x \, dx\,\mbox{.} |
Thus the original integral appears here again. Summarising we have:
\displaystyle \int e^x \cos x \, dx = e^x \cos x + e^x \sin x - \int e^x \cos x \, dx |
and collecting the integrals to one side gives
\displaystyle \int e^x \cos x \, dx = {\textstyle\frac{1}{2}}e^x ( \cos x + \sin x) + C\,\mbox{.} |
Although integration by parts in this case did not lead to an easier integral, we arrived at an equation in which the original integral could be ”solved for”. This is not entirely unusual when the integrand is a product of trigonometric functions and / or exponential functions.
Example 5
Determine the integral \displaystyle \ \int_{0}^{1} \frac{2x}{e^x} \, dx\,.
The integral can be rewritten as
\displaystyle \int_{0}^{1} \frac{2x}{e^x} \, dx = \int_{0}^{1} 2x \, e^{-x} \, dx\,\mbox{.} |
Substitute \displaystyle u=2x and \displaystyle v'=e^{-x}, and integrate by parts
\displaystyle \begin{align*}\int_{0}^{1} 2x \, e^{-x} \, dx &= \Bigl[\,-2x\,e^{-x}\,\Bigr]_{0}^{1} + \int_{0}^{1} 2 e^{-x}\,dx\\[4pt] &= \Bigl[\,-2x e^{-x}\,\Bigr]_{0}^{1} + \Bigl[\,-2 e^{-x}\, \Bigr]_{0}^{1}\\[4pt] &= (-2 \, e^{-1}) - 0 + (- 2\, e^{-1}) - (-2)\\[4pt] &= - \frac{2}{e} - \frac{2}{e} + 2 = 2 - \frac{4}{e}\,\mbox{.}\end{align*} |
Example 6
Determine the integral \displaystyle \ \int \ln \sqrt{x} \ dx\,.
We start by performing a substitution \displaystyle u=\sqrt{x} which gives \displaystyle du=dx/2\sqrt{x} = dx/2u, that is, \displaystyle dx = 2u\,du\,,
\displaystyle \int \ln \sqrt{x} \, dx = \int \ln u \times 2u \, du\,\mbox{.} |
Then we integrate by parts. Put \displaystyle f=\ln u \displaystyle g'=2u, which gives
\displaystyle \begin{align*}\int \ln u \times 2u \, du &= u^2 \ln u - \int u^2 \, \frac{1}{u} \, du = u^2 \ln u - \int u\, du\\[4pt] &= u^2 \ln u - \frac{u^2}{2} + C = x \ln \sqrt{x} - \frac {x}{2} + C\\[4pt] &= x \bigl( \ln \sqrt{x} - \tfrac{1}{2} \bigr) + C\,\mbox{.}\end{align*} |
Note. An alternative approach is to rewrite the initial integrand as \displaystyle \ln\sqrt{x} = \tfrac{1}{2}\ln x and then integrate by parts the product \displaystyle \tfrac{1}{2}\,\ln x.