Lösung 3.4:7b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
According to the factor theorem, a polynomial that has the zeros
+
According to the factor theorem, a polynomial that has the zeros <math>-1+i</math> and <math>-1-i</math> must contain the factors <math>z-(-1+i)</math> and <math>z-(-1-i)</math>. An example of such a polynomial is
-
<math>-\text{1}+i</math>
+
-
and
+
-
<math>-\text{1}-i</math>
+
-
must contain the factors
+
-
<math>z-\left( -\text{1}+i \right)</math>
+
-
and
+
-
<math>z-\left( -\text{1}-i \right)</math>. An example of such a polynomial is
+
 +
{{Displayed math||<math>(z-(-1+i))(z-(-1-i)) = z^2+2z+2\,\textrm{.}</math>}}
-
<math>\left( z-\left( -\text{1}+i \right) \right)\left( z-\left( -\text{1}-i \right) \right)=z^{2}+2z+2</math>
 
 +
Note: If one wants to have all the polynomials which have only these zeros, the answer is
-
NOTE: If one wants to have all the polynomials which have only these zeros, the answer is
+
{{Displayed math||<math>C(z+1-i)^m(z+1+i)^n</math>}}
-
 
+
where <math>C</math> is a non-zero constant and <math>m</math> and <math>n</math> are positive integers.
-
<math>C\left( z+1-i \right)^{m}\left( z+1+i \right)^{n}</math>
+
-
 
+
-
 
+
-
where
+
-
<math>C</math>
+
-
is a non-zero constant and
+
-
<math>m</math>
+
-
and
+
-
<math>n</math>
+
-
are positive integers.
+

Version vom 14:41, 31. Okt. 2008

According to the factor theorem, a polynomial that has the zeros \displaystyle -1+i and \displaystyle -1-i must contain the factors \displaystyle z-(-1+i) and \displaystyle z-(-1-i). An example of such a polynomial is

\displaystyle (z-(-1+i))(z-(-1-i)) = z^2+2z+2\,\textrm{.}


Note: If one wants to have all the polynomials which have only these zeros, the answer is

\displaystyle C(z+1-i)^m(z+1+i)^n

where \displaystyle C is a non-zero constant and \displaystyle m and \displaystyle n are positive integers.