Lösung 3.3:5b
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | Complete the square of the left-hand side | + | Complete the square of the left-hand side, |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(\frac{2-i}{2}\Bigr)^2+3-i &= 0\,,\\[5pt] | ||
+ | \Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(1-i+\frac{1}{4}i^2\Bigr)+3-i&=0\,,\\[5pt] | ||
+ | \Bigl(z-\frac{2-i}{2}\Bigr)^2-1+i+\frac{1}{4}+3-i&=0\,,\\[5pt] | ||
+ | \Bigl(z-\frac{2-i}{2}\Bigr)^2+\frac{9}{4}&=0\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | Taking the square root then gives that the solutions are | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | Taking the root then gives that the solutions are | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>z-\frac{2-i}{2} = \pm\frac{3}{2}\,i\quad \Leftrightarrow \quad z=\left\{ \begin{align} | ||
+ | &1+i\,,\\ | ||
+ | &1-2i\,\textrm{.} | ||
+ | \end{align}\right.</math>}} | ||
+ | Finally, we substitute the solutions into the equation and check that it is satisfied | ||
<math>\begin{align} | <math>\begin{align} | ||
- | + | z={}\rlap{1+i:}\phantom{1-2i:}{}\quad z^2-(2-i)z+(3-i) | |
- | & =\ | + | &= (1+i)^2-(2-i)(1+i)+3-i\\[5pt] |
- | & =1-4i+4i^ | + | &= 1+2i+i^2-(2+2i-i-i^2)+3-i\\[5pt] |
- | & =1-4i-4-2+5i+2+3-i=0 | + | &= 1+2i-1-2-i-1+3-i\\[5pt] |
+ | &=0\,,\\[10pt] | ||
+ | z=1-2i:\quad z^2-(2-i)z+(3-i) | ||
+ | &= (1-2i)^2-(2-i)(1-2i)+3-i\\[5pt] | ||
+ | &= 1-4i+4i^2-(2-4i-i+2i^2)+3-i\\[5pt] | ||
+ | &= 1-4i-4-2+5i+2+3-i\\[5pt] | ||
+ | &= 0\,\textrm{.} | ||
\end{align}</math> | \end{align}</math> |
Version vom 15:32, 30. Okt. 2008
Complete the square of the left-hand side,
\displaystyle \begin{align}
\Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(\frac{2-i}{2}\Bigr)^2+3-i &= 0\,,\\[5pt] \Bigl(z-\frac{2-i}{2}\Bigr)^2-\Bigl(1-i+\frac{1}{4}i^2\Bigr)+3-i&=0\,,\\[5pt] \Bigl(z-\frac{2-i}{2}\Bigr)^2-1+i+\frac{1}{4}+3-i&=0\,,\\[5pt] \Bigl(z-\frac{2-i}{2}\Bigr)^2+\frac{9}{4}&=0\,\textrm{.} \end{align} |
Taking the square root then gives that the solutions are
\displaystyle z-\frac{2-i}{2} = \pm\frac{3}{2}\,i\quad \Leftrightarrow \quad z=\left\{ \begin{align}
&1+i\,,\\ &1-2i\,\textrm{.} \end{align}\right. |
Finally, we substitute the solutions into the equation and check that it is satisfied
\displaystyle \begin{align} z={}\rlap{1+i:}\phantom{1-2i:}{}\quad z^2-(2-i)z+(3-i) &= (1+i)^2-(2-i)(1+i)+3-i\\[5pt] &= 1+2i+i^2-(2+2i-i-i^2)+3-i\\[5pt] &= 1+2i-1-2-i-1+3-i\\[5pt] &=0\,,\\[10pt] z=1-2i:\quad z^2-(2-i)z+(3-i) &= (1-2i)^2-(2-i)(1-2i)+3-i\\[5pt] &= 1-4i+4i^2-(2-4i-i+2i^2)+3-i\\[5pt] &= 1-4i-4-2+5i+2+3-i\\[5pt] &= 0\,\textrm{.} \end{align}