Lösung 3.3:4a
Aus Online Mathematik Brückenkurs 2
K |
|||
| Zeile 3: | Zeile 3: | ||
We write | We write | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>\begin{align} | + | z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] |
| - | & | + | i &= 1\,\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,, |
| - | + | \end{align}</math>}} | |
| - | \end{align}</math> | + | |
| - | + | ||
and, on using de Moivre's formula, the equation becomes | and, on using de Moivre's formula, the equation becomes | ||
| - | + | {{Displayed math||<math>r^2(\cos 2\alpha + i\sin 2\alpha) = 1\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,\textrm{.}</math>}} | |
| - | <math>r^ | + | |
| - | + | ||
Both sides are equal when | Both sides are equal when | ||
| - | + | {{Displayed math||<math>\left\{\begin{align} | |
| - | <math>\left\{ \begin{ | + | r^2 &= 1\,,\\[5pt] |
| - | r^ | + | 2\alpha &= \frac{\pi}{2}+2n\pi\,,\quad\text{(n is an arbitrary integer),} |
| - | 2\alpha =\frac{\pi }{2}+2n\pi \quad \ | + | \end{align}\right.</math>}} |
| - | \end{ | + | |
| - | + | ||
which gives that | which gives that | ||
| + | {{Displayed math||<math>\left\{\begin{align} | ||
| + | r &= 1\,,\\[5pt] | ||
| + | \alpha &= \frac{\pi}{4} + n\pi\,,\quad\text{(n is an arbitrary integer).} | ||
| + | \end{align}\right.</math>}} | ||
| - | + | When <math>n=0</math> and <math>n=1</math>, we get two different arguments for | |
| - | + | <math>\alpha</math>, whilst different values of <math>n</math> only give these arguments plus/minus a multiple of <math>2\pi</math>. | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | When | + | |
| - | <math>n=0</math> | + | |
| - | and | + | |
| - | <math>n= | + | |
| - | <math>\alpha </math>, whilst different values of | + | |
| - | <math>n</math> | + | |
| - | only give these arguments plus/minus a multiple of | + | |
| - | <math>2\pi </math>. | + | |
The solutions to the equation are | The solutions to the equation are | ||
| - | + | {{Displayed math||<math>z=\left\{\begin{align} | |
| - | <math>z=\left\{ \begin{ | + | &1\cdot\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt] |
| - | + | &1\cdot\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr) | |
| - | + | \end{align}\right. | |
| - | \end{ | + | = |
| - | + | \left\{\begin{align} | |
| - | \ -\frac{1+i}{\sqrt{2}} | + | &\frac{1+i}{\sqrt{2}}\,,\\[5pt] |
| - | \end{ | + | &-\frac{1+i}{\sqrt{2}}\,\textrm{.} |
| + | \end{align}\right.</math>}} | ||
Version vom 14:18, 30. Okt. 2008
This is a typical binomial equation which we solve in polar form.
We write
| \displaystyle \begin{align}
z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] i &= 1\,\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,, \end{align} |
and, on using de Moivre's formula, the equation becomes
| \displaystyle r^2(\cos 2\alpha + i\sin 2\alpha) = 1\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,\textrm{.} |
Both sides are equal when
| \displaystyle \left\{\begin{align}
r^2 &= 1\,,\\[5pt] 2\alpha &= \frac{\pi}{2}+2n\pi\,,\quad\text{(n is an arbitrary integer),} \end{align}\right. |
which gives that
| \displaystyle \left\{\begin{align}
r &= 1\,,\\[5pt] \alpha &= \frac{\pi}{4} + n\pi\,,\quad\text{(n is an arbitrary integer).} \end{align}\right. |
When \displaystyle n=0 and \displaystyle n=1, we get two different arguments for \displaystyle \alpha, whilst different values of \displaystyle n only give these arguments plus/minus a multiple of \displaystyle 2\pi.
The solutions to the equation are
| \displaystyle z=\left\{\begin{align}
&1\cdot\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt] &1\cdot\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr) \end{align}\right. = \left\{\begin{align} &\frac{1+i}{\sqrt{2}}\,,\\[5pt] &-\frac{1+i}{\sqrt{2}}\,\textrm{.} \end{align}\right. |
