Lösung 3.3:3b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
+
When we complete the square, we replace all <math>z</math>-terms in the second-degree expression with a quadratic term which contains <math>z</math>, according to the formula
-
When we complete the square, we replace all
+
{{Displayed math||<math>z^2+az = \Bigl(z+\frac{a}{2}\Bigr)^2 - \Bigl(\frac{a}{2}\Bigr)^2\,\textrm{.}</math>}}
-
<math>z</math>
+
-
-terms in the second-degree expression with a quadratic term which contains
+
-
<math>z</math>, according to the formula
+
 +
In our case, we set <math>a=3i</math> in order to complete the square,
-
<math>z^{2}+az=\left( z+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math>
+
{{Displayed math||<math>\begin{align}
-
 
+
z^2+3iz-\frac{1}{4}
-
 
+
&= \Bigl(z+\frac{3}{2}\,i\Bigr)^2 - \Bigl(\frac{3}{2}\,i\Bigr)^2 - \frac{1}{4}\\[5pt]
-
In our case, we set
+
&= \Bigl(z+\frac{3}{2}\,i\Bigr)^2 - \frac{9}{4}\cdot (-1) - \frac{1}{4}\\[5pt]
-
<math>a=\text{3}i\text{ }</math>
+
&= \Bigl(z+\frac{3}{2}\,i\Bigr)^2+2\,\textrm{.}
-
in order to complete the square:
+
\end{align}</math>}}
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& z^{2}+3iz-\frac{1}{4}=\left( z+\frac{3}{2}i \right)^{2}-\left( \frac{3}{2}i \right)^{2}-\frac{1}{4} \\
+
-
& =\left( z+\frac{3}{2}i \right)^{2}-\frac{9}{4}\left( -1 \right)-\frac{1}{4} \\
+
-
& =\left( z+\frac{3}{2}i \right)^{2}+2 \\
+
-
\end{align}</math>
+

Version vom 13:33, 30. Okt. 2008

When we complete the square, we replace all \displaystyle z-terms in the second-degree expression with a quadratic term which contains \displaystyle z, according to the formula

\displaystyle z^2+az = \Bigl(z+\frac{a}{2}\Bigr)^2 - \Bigl(\frac{a}{2}\Bigr)^2\,\textrm{.}

In our case, we set \displaystyle a=3i in order to complete the square,

\displaystyle \begin{align}

z^2+3iz-\frac{1}{4} &= \Bigl(z+\frac{3}{2}\,i\Bigr)^2 - \Bigl(\frac{3}{2}\,i\Bigr)^2 - \frac{1}{4}\\[5pt] &= \Bigl(z+\frac{3}{2}\,i\Bigr)^2 - \frac{9}{4}\cdot (-1) - \frac{1}{4}\\[5pt] &= \Bigl(z+\frac{3}{2}\,i\Bigr)^2+2\,\textrm{.} \end{align}