Lösung 3.3:2a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
An equation of the type
+
An equation of the type "<math>z^{n} = \text{a complex number}</math>" is called a binomial equation and these are usually solved by going over to polar form and using de Moivre's formula.
-
<math>z^{n}</math>
+
-
= a complex number” is called a binomial equation and these are usually solved by going over to polar form and using de Moivre's formula.
+
-
We start by writing
+
We start by writing <math>z</math> and <math>1</math> in polar form
-
<math>z\text{ }</math>
+
-
and
+
-
<math>\text{1}</math>
+
-
in polar form
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& z=r\left( \cos \alpha +i\sin \alpha \right) \\
+
-
& 1=1\left( \cos 0+i\sin 0 \right) \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt]
 +
1 &= 1(\cos 0 + i\sin 0)\,\textrm{.}
 +
\end{align}</math>}}
The equation then becomes
The equation then becomes
 +
{{Displayed math||<math>r^4(\cos 4\alpha + i\sin 4\alpha) = 1\,(\cos 0 + i\sin 0)\,,</math>}}
-
<math>r^{4}\left( \cos 4\alpha +i\sin 4\alpha \right)=1\left( \cos 0+i\sin 0 \right)</math>
+
where we have used de Moivre's formula on the left-hand side. In order that both sides are equal, they must have the same magnitude and the same argument to within a multiple of <math>2\pi</math>, i.e.
-
 
+
{{Displayed math||<math>\left\{\begin{align}
-
where we have used de Moivre's formula on the left-hand side. In order that both sides are equal, they must have the same magnitude and the same argument to within a multiple of
+
r^{4} &= 1\,,\\[5pt]
-
<math>2\pi </math>, i.e.
+
4\alpha &= 0+2n\pi\,,\quad (\text{n is an arbitrary integer})\,\textrm{.}
-
 
+
\end{align}\right.</math>}}
-
 
+
-
<math>\left\{ \begin{array}{*{35}l}
+
-
r^{4}=1 \\
+
-
4\alpha =0+2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
+
-
\end{array} \right.</math>
+
This means that
This means that
-
 
+
{{Displayed math||<math>\left\{\begin{align}
-
<math>\left\{ \begin{array}{*{35}l}
+
r &= 1\,,\\[5pt]
-
r=1 \\
+
\alpha &= \frac{n\pi}{2}\,,\quad \text{(n is an arbitrary integer).}
-
\alpha =\frac{n\pi }{2}\quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
+
\end{align}\right.</math>}}
-
\end{array} \right.</math>
+
The solutions are thus (in polar form)
The solutions are thus (in polar form)
 +
{{Displayed math||<math>z = 1\cdot\Bigl(\cos\frac{n\pi}{2} + i\sin\frac{n\pi}{2}\Bigr)\,,\quad\text{for }n=0,\ \pm 1,\ \pm 2,\ldots</math>}}
-
<math>z=1\centerdot \left( \cos \frac{n\pi }{2}+i\sin \frac{n\pi }{2} \right)</math>, for
+
but observe that the argument on the right-hand side essentially takes only four different values <math>0</math>, <math>\pi/2</math>, <math>\pi</math> and <math>3\pi/2\,</math>, because other values of <math>n</math> give some of these values plus/minus a multiple of <math>2\pi\,</math>.
-
<math>n=0,\ \pm 1,\ \pm 2,...</math>
+
-
 
+
-
 
+
-
but observe that the argument on the right-hand side essentially takes only four different values
+
-
<math>0,\ {\pi }/{2}\;,\ \pi </math>
+
-
and
+
-
<math>{3\pi }/{2}\;</math>, because other values of
+
-
<math>n\text{ }</math>
+
-
give some of these values plus/minus a multiple of
+
-
<math>2\pi </math>.
+
The equation's solutions are therefore
The equation's solutions are therefore
 +
{{Displayed math||<math>z=\left\{\begin{align}
 +
&1\cdot(\cos 0 + i\sin 0)\,,\\[5pt]
 +
&1\cdot(\cos (\pi/2) + i\sin (\pi/2))\,,\\[5pt]
 +
&1\cdot(\cos \pi + i\sin \pi)\,,\\[5pt]
 +
&1\cdot(\cos (3\pi/2) + i\sin (3\pi/2))\,,
 +
\end{align}\right.
 +
=
 +
\left\{ \begin{align}
 +
1\,,&\\[5pt]
 +
i\,,&\\[5pt]
 +
-1\,,&\\[5pt]
 +
-i\,\textrm{.}&
 +
\end{align}\right.</math>}}
-
<math>z=\left\{ \begin{array}{*{35}l}
 
-
1\centerdot \left( \cos 0+i\sin 0 \right) \\
 
-
1\centerdot \left( \cos {\pi }/{2}\;+i\sin {\pi }/{2}\; \right) \\
 
-
1\centerdot \left( \cos \pi +i\sin \pi \right) \\
 
-
1\centerdot \left( \cos {3\pi }/{2}\;+i\sin {3\pi }/{2}\; \right) \\
 
-
\end{array} \right.=\left\{ \begin{matrix}
 
-
1 \\
 
-
i \\
 
-
-1 \\
 
-
-i \\
 
-
\end{matrix} \right.</math>
 
- 
- 
-
NOTE: note that if we mark these solutions on the complex number plane, we see that they are corners in a regular quadrilateral.
 
 +
Note: If we mark these solutions on the complex number plane, we see that they are corners in a regular quadrilateral.
[[Image:3_3_2_a.gif|center]]
[[Image:3_3_2_a.gif|center]]

Version vom 11:58, 30. Okt. 2008

An equation of the type "\displaystyle z^{n} = \text{a complex number}" is called a binomial equation and these are usually solved by going over to polar form and using de Moivre's formula.

We start by writing \displaystyle z and \displaystyle 1 in polar form

\displaystyle \begin{align}

z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] 1 &= 1(\cos 0 + i\sin 0)\,\textrm{.} \end{align}

The equation then becomes

\displaystyle r^4(\cos 4\alpha + i\sin 4\alpha) = 1\,(\cos 0 + i\sin 0)\,,

where we have used de Moivre's formula on the left-hand side. In order that both sides are equal, they must have the same magnitude and the same argument to within a multiple of \displaystyle 2\pi, i.e.

\displaystyle \left\{\begin{align}

r^{4} &= 1\,,\\[5pt] 4\alpha &= 0+2n\pi\,,\quad (\text{n is an arbitrary integer})\,\textrm{.} \end{align}\right.

This means that

\displaystyle \left\{\begin{align}

r &= 1\,,\\[5pt] \alpha &= \frac{n\pi}{2}\,,\quad \text{(n is an arbitrary integer).} \end{align}\right.

The solutions are thus (in polar form)

\displaystyle z = 1\cdot\Bigl(\cos\frac{n\pi}{2} + i\sin\frac{n\pi}{2}\Bigr)\,,\quad\text{for }n=0,\ \pm 1,\ \pm 2,\ldots

but observe that the argument on the right-hand side essentially takes only four different values \displaystyle 0, \displaystyle \pi/2, \displaystyle \pi and \displaystyle 3\pi/2\,, because other values of \displaystyle n give some of these values plus/minus a multiple of \displaystyle 2\pi\,.

The equation's solutions are therefore

\displaystyle z=\left\{\begin{align}

&1\cdot(\cos 0 + i\sin 0)\,,\\[5pt] &1\cdot(\cos (\pi/2) + i\sin (\pi/2))\,,\\[5pt] &1\cdot(\cos \pi + i\sin \pi)\,,\\[5pt] &1\cdot(\cos (3\pi/2) + i\sin (3\pi/2))\,, \end{align}\right. = \left\{ \begin{align} 1\,,&\\[5pt] i\,,&\\[5pt] -1\,,&\\[5pt] -i\,\textrm{.}& \end{align}\right.


Note: If we mark these solutions on the complex number plane, we see that they are corners in a regular quadrilateral.