Lösung 3.3:1a
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | Powers are repeated multiplications and because multiplication is a relatively simple arithmetical operation when it is carried out in polar form, calculating powers also becomes fairly simple in polar form | + | Powers are repeated multiplications and because multiplication is a relatively simple arithmetical operation when it is carried out in polar form, calculating powers also becomes fairly simple in polar form, |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\bigl(r(\cos\alpha + i\sin\alpha)\bigr)^n = r^n(\cos n\alpha + i\sin n\alpha)\,\textrm{.}</math>}} | ||
The equation above is called de Moivre's formula. | The equation above is called de Moivre's formula. | ||
- | The plan is therefore to rewrite | + | The plan is therefore to rewrite <math>1+i</math> in polar form, raise the expression to the power <math>12</math> using de Moivre's formula and then to write the answer in the form <math>a+ib</math>. |
- | <math> | + | |
- | in polar form, | + | |
- | <math> | + | |
- | using de Moivre's formula and then to write the answer in the form | + | |
- | <math>a+ib</math>. | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | <center>[[Image:3_3_1_a1.gif]] [[Image:3_3_1_a_text.gif]]</center> | ||
Using the calculations above, we see that | Using the calculations above, we see that | ||
+ | {{Displayed math||<math>1+i = \sqrt{2}\Bigl(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \Bigr)\,\textrm{.}</math>}} | ||
- | + | De Moivre's formula now gives | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | + | (1+i)^{12} | |
- | & =2^{ | + | &= \bigl(\sqrt{2}\,\bigr)^{12}\Bigl(\cos \Bigl(12\cdot\frac{\pi}{4}\Bigr) + i\sin \Bigl(12\cdot\frac{\pi}{4}\Bigr)\Bigr)\\[5pt] |
- | & =2^ | + | &= 2^{(1/2)\cdot 12}\Bigl(\cos 3\pi + i\sin 3\pi\Bigr)\\[5pt] |
- | & | + | &= 2^6(-1+i\cdot 0)\\[5pt] |
- | \end{align}</math> | + | &= 64\cdot (-1)\\[5pt] |
+ | &= -64\,\textrm{.} | ||
+ | \end{align}</math>}} |
Version vom 08:50, 30. Okt. 2008
Powers are repeated multiplications and because multiplication is a relatively simple arithmetical operation when it is carried out in polar form, calculating powers also becomes fairly simple in polar form,
\displaystyle \bigl(r(\cos\alpha + i\sin\alpha)\bigr)^n = r^n(\cos n\alpha + i\sin n\alpha)\,\textrm{.} |
The equation above is called de Moivre's formula.
The plan is therefore to rewrite \displaystyle 1+i in polar form, raise the expression to the power \displaystyle 12 using de Moivre's formula and then to write the answer in the form \displaystyle a+ib.


Using the calculations above, we see that
\displaystyle 1+i = \sqrt{2}\Bigl(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \Bigr)\,\textrm{.} |
De Moivre's formula now gives
\displaystyle \begin{align}
(1+i)^{12} &= \bigl(\sqrt{2}\,\bigr)^{12}\Bigl(\cos \Bigl(12\cdot\frac{\pi}{4}\Bigr) + i\sin \Bigl(12\cdot\frac{\pi}{4}\Bigr)\Bigr)\\[5pt] &= 2^{(1/2)\cdot 12}\Bigl(\cos 3\pi + i\sin 3\pi\Bigr)\\[5pt] &= 2^6(-1+i\cdot 0)\\[5pt] &= 64\cdot (-1)\\[5pt] &= -64\,\textrm{.} \end{align} |