Lösung 3.1:4d
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | {{NAVCONTENT_START}} | ||
In the equation, <math>z</math> occurs only as <math>\bar{z}</math> and, to begin with, we can therefore treat <math>\bar{z}</math> as unknown. | In the equation, <math>z</math> occurs only as <math>\bar{z}</math> and, to begin with, we can therefore treat <math>\bar{z}</math> as unknown. | ||
Divide both sides by <math>2+i</math>, | Divide both sides by <math>2+i</math>, | ||
+ | {{Displayed math||<math>\bar{z}=\frac{1+i}{2+i}\,,</math>}} | ||
- | + | and calculate the quotient on the right-hand side by multiplying top and bottom by the complex conjugate of the denominator, | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \bar{z} | ||
+ | &= \frac{(1+i)(2-i)}{(2+i)(2-i)} | ||
+ | = \frac{1\cdot 2-1\cdot i +i \cdot 2 - i\cdot i}{2^2-i^2}\\[5pt] | ||
+ | &= \frac{2-i+2i+1}{4+1} | ||
+ | = \frac{3+i}{5} | ||
+ | = \frac{3}{5}+\frac{1}{5}\,i\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | This means that <math>z=\tfrac{3}{5}-\tfrac{1}{5}i\,</math>. | |
+ | We check that <math>z=\tfrac{3}{5}-\tfrac{1}{5}i</math> satisfies the original equation, | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | + | \text{LHS} | |
- | + | &= (2+i)\bar{z} | |
- | + | = (2+i)\overline{\Bigl(\frac{3}{5}-\frac{1}{5}\,i\Bigr)} | |
- | + | = (2+i)\Bigl(\frac{3}{5}+\frac{1}{5}\,i\Bigr)\\[5pt] | |
- | + | &= 2\cdot\frac{3}{5}+2\cdot\frac{1}{5}\,i+i\cdot\frac{3}{5}+i\cdot\frac{1}{5}\,i | |
- | + | = \frac{6}{5}+\frac{2}{5}\,i+\frac{3}{5}\,i-\frac{1}{5}\\[5pt] | |
- | + | &=\frac{6-1}{5}+\frac{2+3}{5}\,i | |
- | + | = 1+i | |
- | + | = \text{RHS}\,\textrm{.} | |
- | &=2\cdot\frac{3}{5}+2\cdot\frac{1}{5}i+i\cdot\frac{3}{5}+i\cdot\frac{1}{5}i=\frac{6}{5}+\frac{2}{5}i+\frac{3}{5}i-\frac{1}{5}\\ | + | \end{align}</math>}} |
- | &=\frac{6-1}{5}+\frac{2+3}{5}i=1+i= RHS\end{align}</math> | + | |
- | + |
Version vom 08:09, 30. Okt. 2008
In the equation, \displaystyle z occurs only as \displaystyle \bar{z} and, to begin with, we can therefore treat \displaystyle \bar{z} as unknown.
Divide both sides by \displaystyle 2+i,
\displaystyle \bar{z}=\frac{1+i}{2+i}\,, |
and calculate the quotient on the right-hand side by multiplying top and bottom by the complex conjugate of the denominator,
\displaystyle \begin{align}
\bar{z} &= \frac{(1+i)(2-i)}{(2+i)(2-i)} = \frac{1\cdot 2-1\cdot i +i \cdot 2 - i\cdot i}{2^2-i^2}\\[5pt] &= \frac{2-i+2i+1}{4+1} = \frac{3+i}{5} = \frac{3}{5}+\frac{1}{5}\,i\,\textrm{.} \end{align} |
This means that \displaystyle z=\tfrac{3}{5}-\tfrac{1}{5}i\,.
We check that \displaystyle z=\tfrac{3}{5}-\tfrac{1}{5}i satisfies the original equation,
\displaystyle \begin{align}
\text{LHS} &= (2+i)\bar{z} = (2+i)\overline{\Bigl(\frac{3}{5}-\frac{1}{5}\,i\Bigr)} = (2+i)\Bigl(\frac{3}{5}+\frac{1}{5}\,i\Bigr)\\[5pt] &= 2\cdot\frac{3}{5}+2\cdot\frac{1}{5}\,i+i\cdot\frac{3}{5}+i\cdot\frac{1}{5}\,i = \frac{6}{5}+\frac{2}{5}\,i+\frac{3}{5}\,i-\frac{1}{5}\\[5pt] &=\frac{6-1}{5}+\frac{2+3}{5}\,i = 1+i = \text{RHS}\,\textrm{.} \end{align} |