Lösung 3.1:4b
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | + | If we divide both sides by <math>2-i</math>, we obtain <math>z</math> by itself on the left-hand side, | |
- | If we divide both sides by 2-i, we obtain z by itself on the left-hand side | + | |
+ | {{Displayed math||<math>z=\frac{3+2i}{2-i}\,\textrm{.}</math>}} | ||
- | + | It remains to calculate the quotient on the right-hand side. We multiply top and bottom by the complex conjugate of the denominator, | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | z &= \frac{(3+2i)(2+i)}{(2-i)(2+i)}\\[5pt] | ||
+ | &= \frac{3\cdot 2+3\cdot i +2i\cdot 2+2i\cdot i}{2^2-i^2}\\[5pt] | ||
+ | &= \frac{6+3i+4i-2}{4+1}\\[5pt] | ||
+ | &= \frac{4+7i}{5}\\[5pt] | ||
+ | &= \frac{4}{5}+\frac{7}{5}\,i\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | Also, we substitute <math>z=\tfrac{4}{5}+\tfrac{7}{5}i</math> into the original equation to assure ourselves that we have calculated correctly, | |
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \text{LHS} |
- | + | &= (2-i)z\\[5pt] | |
- | + | &= (2-i)\Bigl(\frac{4}{5}+\frac{7}{5}\,i\bigr)\\[5pt] | |
- | + | &= 2\cdot\frac{4}{5} + 2\cdot\frac{7}{5}\,i - i\cdot\frac{4}{5} - i\cdot\frac{7}{5}\,i\\[5pt] | |
- | + | &= \frac{8}{5} + \frac{14}{5}\,i - \frac{4}{5}\,i + \frac{7}{5}\\[5pt] | |
- | + | &= \frac{8+7}{5} + \frac{14-4}{5}\,i\\[5pt] | |
- | + | &= \frac{15}{5} + \frac{10}{5}\,i\\[5pt] | |
- | + | &= 3+2i\\[5pt] | |
- | &=2\cdot\frac{4}{5} | + | &= \text{RHS.}\end{align}</math>}} |
- | &=\frac{8}{5} | + | |
- | &=\frac{15}{5}+\frac{10}{5}i=3+2i=RHS.\end{align}</math> | + | |
- | + | ||
- | + |
Version vom 07:27, 30. Okt. 2008
If we divide both sides by \displaystyle 2-i, we obtain \displaystyle z by itself on the left-hand side,
\displaystyle z=\frac{3+2i}{2-i}\,\textrm{.} |
It remains to calculate the quotient on the right-hand side. We multiply top and bottom by the complex conjugate of the denominator,
\displaystyle \begin{align}
z &= \frac{(3+2i)(2+i)}{(2-i)(2+i)}\\[5pt] &= \frac{3\cdot 2+3\cdot i +2i\cdot 2+2i\cdot i}{2^2-i^2}\\[5pt] &= \frac{6+3i+4i-2}{4+1}\\[5pt] &= \frac{4+7i}{5}\\[5pt] &= \frac{4}{5}+\frac{7}{5}\,i\,\textrm{.} \end{align} |
Also, we substitute \displaystyle z=\tfrac{4}{5}+\tfrac{7}{5}i into the original equation to assure ourselves that we have calculated correctly,
\displaystyle \begin{align}
\text{LHS} &= (2-i)z\\[5pt] &= (2-i)\Bigl(\frac{4}{5}+\frac{7}{5}\,i\bigr)\\[5pt] &= 2\cdot\frac{4}{5} + 2\cdot\frac{7}{5}\,i - i\cdot\frac{4}{5} - i\cdot\frac{7}{5}\,i\\[5pt] &= \frac{8}{5} + \frac{14}{5}\,i - \frac{4}{5}\,i + \frac{7}{5}\\[5pt] &= \frac{8+7}{5} + \frac{14-4}{5}\,i\\[5pt] &= \frac{15}{5} + \frac{10}{5}\,i\\[5pt] &= 3+2i\\[5pt] &= \text{RHS.}\end{align} |