Lösung 3.1:2a
Aus Online Mathematik Brückenkurs 2
K |
|||
| Zeile 1: | Zeile 1: | ||
| - | + | A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator, | |
| - | A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator | + | |
| - | <math>\frac{3-2i}{1+i} = \frac{3-2i}{1+i}\frac{1-i}{1-i}.</math> | + | {{Displayed math||<math>\frac{3-2i}{1+i} = \frac{3-2i}{1+i}\cdot\frac{1-i}{1-i}\,\textrm{.}</math>}} |
| - | + | ||
| - | + | ||
| - | + | Then, the formula for the difference of two squares gives that the new denominator is a real number, | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \frac{3-2i}{1+i}\cdot\frac{1-i}{1-i} | ||
| + | &= \frac{(3-2i)(1-i)}{(1+i)(1-i)}\\[5pt] | ||
| + | &= \frac{(3-2i)(1-i)}{1^2-i^2}\\[5pt] | ||
| + | &= \frac{(3-2i)(1-i)}{1+1}\\[5pt] | ||
| + | &= \frac{(3-2i)(1-i)}{2}\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
| - | + | All that remains is to multiply together what is in the numerator, | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | {{ | + | {{Displayed math||<math>\begin{align} |
| + | \frac{(3-2i)(1-i)}{2} | ||
| + | &= \frac{3\cdot 1 -3\cdot i - 2i\cdot 1 - 2i\cdot(-i)}{2}\\[5pt] | ||
| + | &= \frac{3-3i-2i+2i^2}{2}\\[5pt] | ||
| + | &= \frac{3-(3+2)i+2\cdot (-1)}{2}\\[5pt] | ||
| + | &= \frac{1-5i}{2}\\[5pt] | ||
| + | &= \frac{1}{2}-\frac{5}{2}\,i\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Version vom 15:15, 29. Okt. 2008
A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator,
| \displaystyle \frac{3-2i}{1+i} = \frac{3-2i}{1+i}\cdot\frac{1-i}{1-i}\,\textrm{.} |
Then, the formula for the difference of two squares gives that the new denominator is a real number,
| \displaystyle \begin{align}
\frac{3-2i}{1+i}\cdot\frac{1-i}{1-i} &= \frac{(3-2i)(1-i)}{(1+i)(1-i)}\\[5pt] &= \frac{(3-2i)(1-i)}{1^2-i^2}\\[5pt] &= \frac{(3-2i)(1-i)}{1+1}\\[5pt] &= \frac{(3-2i)(1-i)}{2}\,\textrm{.} \end{align} |
All that remains is to multiply together what is in the numerator,
| \displaystyle \begin{align}
\frac{(3-2i)(1-i)}{2} &= \frac{3\cdot 1 -3\cdot i - 2i\cdot 1 - 2i\cdot(-i)}{2}\\[5pt] &= \frac{3-3i-2i+2i^2}{2}\\[5pt] &= \frac{3-(3+2)i+2\cdot (-1)}{2}\\[5pt] &= \frac{1-5i}{2}\\[5pt] &= \frac{1}{2}-\frac{5}{2}\,i\,\textrm{.} \end{align} |
