Lösung 3.2:4d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
For magnitudes of quotients, we have the arithmetical rule
For magnitudes of quotients, we have the arithmetical rule
 +
{{Displayed math||<math>\left|\frac{z}{w}\right| = \frac{|z|}{|w|}\,\textrm{.}</math>}}
-
<math>\left| \frac{z}{w} \right|=\frac{\left| z \right|}{\left| w \right|}</math>
+
We can therefore take the magnitude of the numerator and denominator separately and then divide the magnitudes by each other,
-
 
+
{{Displayed math||<math>\begin{align}
-
We can therefore take the magnitude of the numerator and denominator separately and then divide the magnitudes by each other:
+
\left|\frac{3-4i}{3+2i}\right|
-
 
+
&= \frac{|3-4i|}{|3+2i|}
-
 
+
= \frac{\sqrt{3^2+(-4)^2}}{\sqrt{3^2+2^2}}
-
<math>\begin{align}
+
= \frac{\sqrt{9+16}}{\sqrt{9+4}}
-
& \left| \frac{3-4i}{3+2i} \right|=\frac{\left| 3-4i \right|}{\left| 3+2i \right|}=\frac{\sqrt{3^{2}+\left( -4 \right)^{2}}}{\sqrt{3^{2}+2^{2}}}=\frac{\sqrt{9+16}}{\sqrt{9+4}} \\
+
= \frac{\sqrt{25}}{\sqrt{13}}
-
& =\frac{\sqrt{25}}{\sqrt{13}}=\frac{5}{\sqrt{13}} \\
+
= \frac{5}{\sqrt{13}}\,\textrm{.}
-
\end{align}</math>
+
\end{align}</math>}}

Version vom 12:16, 29. Okt. 2008

For magnitudes of quotients, we have the arithmetical rule

\displaystyle \left|\frac{z}{w}\right| = \frac{|z|}{|w|}\,\textrm{.}

We can therefore take the magnitude of the numerator and denominator separately and then divide the magnitudes by each other,

\displaystyle \begin{align}

\left|\frac{3-4i}{3+2i}\right| &= \frac{|3-4i|}{|3+2i|} = \frac{\sqrt{3^2+(-4)^2}}{\sqrt{3^2+2^2}} = \frac{\sqrt{9+16}}{\sqrt{9+4}} = \frac{\sqrt{25}}{\sqrt{13}} = \frac{5}{\sqrt{13}}\,\textrm{.} \end{align}