Lösung 3.2:4c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | One way to determine the magnitude is to calculate the product | + | One way to determine the magnitude is to calculate the product <math>(3-4i)(3+2i)</math> and then to take the magnitude of the result, but for products we have that |
- | <math> | + | |
- | and then to take the magnitude of the result, but for products | + | |
+ | {{Displayed math||<math>|zw| = |z|\cdot |w|</math>}} | ||
- | <math> | + | and we can take the magnitude of the factors <math>3-4i</math> and <math>3+2i</math> and then multiply the magnitudes together, |
- | + | {{Displayed math||<math>\begin{align} | |
- | + | |(3-4i)(3+2i)| | |
- | + | &= |3-4i|\cdot |3+2i|\\[5pt] | |
- | + | &= \sqrt{3^2+(-4)^2}\cdot\sqrt{3^2+2^2}\\[5pt] | |
- | + | &= \sqrt{9+16}\sqrt{9+4}\\[5pt] | |
- | + | &= \sqrt{25}\sqrt{13}\\[5pt] | |
- | + | &= 5\sqrt{13}\,\textrm{.} | |
- | + | \end{align}</math>}} | |
- | <math>\begin{align} | + | |
- | + | ||
- | & =\sqrt{3^ | + | |
- | & =\sqrt{9+16} | + | |
- | & =\sqrt{25} | + | |
- | \end{align}</math> | + |
Version vom 12:05, 29. Okt. 2008
One way to determine the magnitude is to calculate the product \displaystyle (3-4i)(3+2i) and then to take the magnitude of the result, but for products we have that
\displaystyle |zw| = |z|\cdot |w| |
and we can take the magnitude of the factors \displaystyle 3-4i and \displaystyle 3+2i and then multiply the magnitudes together,
\displaystyle \begin{align}
|(3-4i)(3+2i)| &= |3-4i|\cdot |3+2i|\\[5pt] &= \sqrt{3^2+(-4)^2}\cdot\sqrt{3^2+2^2}\\[5pt] &= \sqrt{9+16}\sqrt{9+4}\\[5pt] &= \sqrt{25}\sqrt{13}\\[5pt] &= 5\sqrt{13}\,\textrm{.} \end{align} |