Lösung 3.2:4b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
We calculate what the expression will be | We calculate what the expression will be | ||
| + | {{Displayed math||<math>(2-i)+(5+3i) = 2+5+(-1+3)i = 7+2i</math>}} | ||
| - | + | and then calculate the magnitude, | |
| - | + | {{Displayed math||<math>|7+2i| = \sqrt{7^2+2^2} = \sqrt{49+4} = \sqrt{53}\,\textrm{.}</math>}} | |
| - | + | Note: It is not possible to calculate the magnitude of the terms individually | |
| - | + | {{Displayed math||<math>|(2-i)+(5+3i)| \ne |2-i| + |5+3i|\,\textrm{.}</math>}} | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math> | + | |
Version vom 11:57, 29. Okt. 2008
We calculate what the expression will be
| \displaystyle (2-i)+(5+3i) = 2+5+(-1+3)i = 7+2i |
and then calculate the magnitude,
| \displaystyle |7+2i| = \sqrt{7^2+2^2} = \sqrt{49+4} = \sqrt{53}\,\textrm{.} |
Note: It is not possible to calculate the magnitude of the terms individually
| \displaystyle |(2-i)+(5+3i)| \ne |2-i| + |5+3i|\,\textrm{.} |
