Lösung 2.3:2d
Aus Online Mathematik Brückenkurs 2
| K  | |||
| Zeile 1: | Zeile 1: | ||
| We shall solve the exercise in two different ways. | We shall solve the exercise in two different ways. | ||
| - | Method 1 (partial integration) | ||
| - | + | '''Method 1''' (integration by parts) | |
| + | At first sight, integration by parts seems impossible, but the trick is to see the integrand as the product | ||
| - | <math>1\centerdot \ln x</math> | + | {{Displayed math||<math>1\centerdot \ln x\,\textrm{.}</math>}} | 
| + | We integrate the factor <math>1</math> and differentiate <math>\ln x</math>, | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>\ | + | \int 1\cdot\ln x\,dx | 
| - | + | &= x\cdot\ln x - \int x\cdot\frac{1}{x}\,dx\\[5pt]  | |
| - | + | &= x\cdot\ln x - \int 1\,dx\\[5pt] | |
| + | &= x\cdot\ln x - x + C\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
| - | + | '''Method 2''' (substitution) | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| + | It seems difficult to find some suitable expression to substitute, so we try to substitute the whole expression <math>u=\ln x\,</math>. The problem we encounter is how we should handle the change from <math>dx</math> to <math>du</math>. With this substitution, the relation between <math>dx</math> and <math>du</math> becomes | ||
| - | + | {{Displayed math||<math>du = (\ln x)'\,dx = \frac{1}{x}\,dx</math>}} | |
| - | + | and because <math>u = \ln x</math>, then <math>x=e^u</math> and we have that | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | and because  | + | |
| - | <math>u=\ | + | |
| - | <math>x=e^ | + | |
| - | and we have that | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>du = \frac{1}{e^u}\,dx\quad\Leftrightarrow\quad dx = e^u\,du\,\textrm{.}</math>}} | ||
| Thus, the substitution becomes | Thus, the substitution becomes | ||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \int \ln x\,dx | ||
| + | = \left\{\begin{align} | ||
| + | u &= \ln x\\[5pt] | ||
| + | dx &= e^u\,du | ||
| + | \end{align}\right\} | ||
| + | = \int ue^u\,du\,\textrm{.}  | ||
| + | \end{align}</math>}} | ||
| - | + | Now, we carry out an integration by parts, | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | Now, we carry out  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \int u\cdot e^u\,du | ||
| + | &= u\cdot e^u - \int 1\cdot e^u\,du\\[5pt]  | ||
| + | &= ue^u - \int e^u\,du\\[5pt]  | ||
| + | &= ue^u - e^u + C\\[5pt] | ||
| + | &= (u-1)e^u + C\,, | ||
| + | \end{align}</math>}} | ||
| and the answer becomes | and the answer becomes | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | + | \int \ln x\,dx | |
| - | <math>\begin{align} | + | &= (\ln x-1)e^{\ln x} + C\\[5pt] | 
| - | + | &= (\ln x-1)x + C\,\textrm{.}  | |
| - | & = | + | \end{align}</math>}} | 
| - | \end{align}</math> | + | |
Version vom 09:13, 29. Okt. 2008
We shall solve the exercise in two different ways.
Method 1 (integration by parts)
At first sight, integration by parts seems impossible, but the trick is to see the integrand as the product
| \displaystyle 1\centerdot \ln x\,\textrm{.} | 
We integrate the factor \displaystyle 1 and differentiate \displaystyle \ln x,
| \displaystyle \begin{align} \int 1\cdot\ln x\,dx &= x\cdot\ln x - \int x\cdot\frac{1}{x}\,dx\\[5pt] &= x\cdot\ln x - \int 1\,dx\\[5pt] &= x\cdot\ln x - x + C\,\textrm{.} \end{align} | 
Method 2 (substitution)
It seems difficult to find some suitable expression to substitute, so we try to substitute the whole expression \displaystyle u=\ln x\,. The problem we encounter is how we should handle the change from \displaystyle dx to \displaystyle du. With this substitution, the relation between \displaystyle dx and \displaystyle du becomes
| \displaystyle du = (\ln x)'\,dx = \frac{1}{x}\,dx | 
and because \displaystyle u = \ln x, then \displaystyle x=e^u and we have that
| \displaystyle du = \frac{1}{e^u}\,dx\quad\Leftrightarrow\quad dx = e^u\,du\,\textrm{.} | 
Thus, the substitution becomes
| \displaystyle \begin{align} \int \ln x\,dx = \left\{\begin{align} u &= \ln x\\[5pt] dx &= e^u\,du \end{align}\right\} = \int ue^u\,du\,\textrm{.} \end{align} | 
Now, we carry out an integration by parts,
| \displaystyle \begin{align} \int u\cdot e^u\,du &= u\cdot e^u - \int 1\cdot e^u\,du\\[5pt] &= ue^u - \int e^u\,du\\[5pt] &= ue^u - e^u + C\\[5pt] &= (u-1)e^u + C\,, \end{align} | 
and the answer becomes
| \displaystyle \begin{align} \int \ln x\,dx &= (\ln x-1)e^{\ln x} + C\\[5pt] &= (\ln x-1)x + C\,\textrm{.} \end{align} | 
 
		  