Lösung 2.3:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | |||
| Zeile 1: | Zeile 1: | ||
| - | If we use the definition of  | + | If we use the definition of <math>\tan x</math> and write the integral as  | 
| - | <math>\tan x</math> | + | |
| - | and write the integral as  | + | |
| + | {{Displayed math||<math>\int\tan x\,dx = \int\frac{\sin x}{\cos x}\,dx</math>}} | ||
| - | <math>\ | + | we see that the numerator <math>\sin x</math> is the derivative of the denominator (apart from the minus sign). Hence, the substitution <math>u=\cos x</math> will work, | 
| + | {{Displayed math||<math>\begin{align} | ||
| + | \int\frac{\sin x}{\cos x}\,dx | ||
| + | &= \left\{\begin{align} | ||
| + | u &= \cos x\\[5pt] | ||
| + | du &= (\cos x)'\,dx = -\sin x\,dx | ||
| + | \end{align}\right\}\\[5pt] | ||
| + | &= -\int\frac{du}{u}\\[5pt] | ||
| + | &= -\ln |u| + C\\[5pt] | ||
| + | &= -\ln |\cos x| + C\,\textrm{.}  | ||
| + | \end{align}</math>}} | ||
| - | we see that the numerator | ||
| - | <math>\sin x</math> | ||
| - | is the derivative of the denominator (apart from the minus sign). Hence, the substitution  | ||
| - | <math>u=\cos x</math> | ||
| - | will work, | ||
| - | + | Note: <math>-\ln \left| \cos x \right|+C</math> is only a primitive function in intervals in which <math>\cos x\ne 0</math>. | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>-\ln \left| \cos x \right|+C</math> | + | |
| - | is only a primitive function in intervals in which  | + | |
| - | <math>\cos x\ne 0</math>. | + | |
Version vom 08:59, 29. Okt. 2008
If we use the definition of \displaystyle \tan x and write the integral as
| \displaystyle \int\tan x\,dx = \int\frac{\sin x}{\cos x}\,dx | 
we see that the numerator \displaystyle \sin x is the derivative of the denominator (apart from the minus sign). Hence, the substitution \displaystyle u=\cos x will work,
| \displaystyle \begin{align} \int\frac{\sin x}{\cos x}\,dx &= \left\{\begin{align} u &= \cos x\\[5pt] du &= (\cos x)'\,dx = -\sin x\,dx \end{align}\right\}\\[5pt] &= -\int\frac{du}{u}\\[5pt] &= -\ln |u| + C\\[5pt] &= -\ln |\cos x| + C\,\textrm{.} \end{align} | 
Note: \displaystyle -\ln \left| \cos x \right|+C is only a primitive function in intervals in which \displaystyle \cos x\ne 0.
 
		  