Lösung 2.3:2b
Aus Online Mathematik Brückenkurs 2
| K  | |||
| Zeile 1: | Zeile 1: | ||
| - | We have a product of two factors in the integrand,  | + | We have a product of two factors in the integrand, so an integration by parts does not seem unreasonable. There is nevertheless a problem as regards which factor should be differentiated and which should be integrated. If we choose to differentiate <math>x^3</math> (so as to reduce its exponent by 1), we need to find a primitive function for <math>e^{x^2}</math>, and how do we do that? If, on the other hand, we integrate <math>x^3</math> and differentiate <math>e^{x^2}</math>, we get | 
| - | <math>x^ | + | |
| - | (so as to reduce its exponent by | + | |
| - | + | ||
| - | <math>e^{x^ | + | |
| - | <math>x^ | + | |
| - | and differentiate  | + | |
| - | <math>e^{x^ | + | |
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>\begin{align} | + | \int x^3\cdot e^{x^2}\,dx | 
| - | + | &= \frac{x^4}{4}\cdot e^{x^2} - \int\frac{x^4}{4}\cdot e^{x^2}2x\,dx\\[5pt]  | |
| - | & =\frac{1}{4}x^{4}e^{x^ | + | &= \frac{1}{4}x^{4}e^{x^2} - \frac{1}{2}\int x^5e^{x^2}\,dx  | 
| - | \end{align}</math> | + | \end{align}</math>}} | 
| which just seems to make the integral harder. The solution is instead to substitute | which just seems to make the integral harder. The solution is instead to substitute | ||
| - | <math>u=x^ | + | <math>u=x^2</math>. If we write the integral as  | 
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math> | + | {{Displayed math||<math>\int\limits_0^1 x^3e^{x^2}\,dx = \int\limits_0^1 x^2e^{x^2}x\,dx</math>}} | 
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| + | we see that the expression "<math>x\,dx</math>" can be replaced by <math>du</math> | ||
| + | and the rest of the integrand contains only <math>x</math> in the form of <math>x^2</math>. The substitution gives  | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>u</math> | + | \int\limits_0^1 x^3e^{x^2}\,dx | 
| + | &= \int\limits_0^1 x^2e^{x^2}x\,dx\\[5pt] | ||
| + | &= \left\{\begin{align} | ||
| + | u &= x^2\\[5pt] | ||
| + | du &= \bigl(x^2\bigr)'\,dx = 2x\,dx | ||
| + | \end{align}\right\}\\[5pt]  | ||
| + | &= \int\limits_0^1 ue^u\tfrac{1}{2}\,du\\[5pt] | ||
| + | &= \frac{1}{2}\int\limits_0^1 ue^u\,du\,\textrm{.}  | ||
| + | \end{align}</math>}} | ||
| + | We can then calculate this integral by integration by parts, where we differentiate away the factor <math>u</math>, | ||
| - | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} | 
| - | + | \frac{1}{2}\int\limits_0^1 ue^u\,du | |
| - | & =\frac{1}{2}\ | + | &= \frac{1}{2}\Bigl[\ ue^u\ \Bigr]_0^1 - \frac{1}{2}\int\limits_0^1 1\cdot e^u\,du\\[5pt]  | 
| - | & =\frac{1}{2}e-\frac{1}{2}\ | + | &= \frac{1}{2}\bigl(1\cdot e^1-0\bigr) - \frac{1}{2}\Bigl[\ e^u\ \Bigr]_0^1\\[5pt]  | 
| - | & =\frac{1}{2}e-\frac{1}{2}e+\frac{1}{2}=\frac{1}{2} \\  | + | &= \frac{1}{2}e - \frac{1}{2}\bigl(e^1-e^0\bigr)\\[5pt]  | 
| - | \end{align}</math> | + | &= \frac{1}{2}e - \frac{1}{2}e + \frac{1}{2}\\[5pt] | 
| + | &= \frac{1}{2}\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Version vom 08:54, 29. Okt. 2008
We have a product of two factors in the integrand, so an integration by parts does not seem unreasonable. There is nevertheless a problem as regards which factor should be differentiated and which should be integrated. If we choose to differentiate \displaystyle x^3 (so as to reduce its exponent by 1), we need to find a primitive function for \displaystyle e^{x^2}, and how do we do that? If, on the other hand, we integrate \displaystyle x^3 and differentiate \displaystyle e^{x^2}, we get
| \displaystyle \begin{align} \int x^3\cdot e^{x^2}\,dx &= \frac{x^4}{4}\cdot e^{x^2} - \int\frac{x^4}{4}\cdot e^{x^2}2x\,dx\\[5pt] &= \frac{1}{4}x^{4}e^{x^2} - \frac{1}{2}\int x^5e^{x^2}\,dx \end{align} | 
which just seems to make the integral harder. The solution is instead to substitute \displaystyle u=x^2. If we write the integral as
| \displaystyle \int\limits_0^1 x^3e^{x^2}\,dx = \int\limits_0^1 x^2e^{x^2}x\,dx | 
we see that the expression "\displaystyle x\,dx" can be replaced by \displaystyle du and the rest of the integrand contains only \displaystyle x in the form of \displaystyle x^2. The substitution gives
| \displaystyle \begin{align} \int\limits_0^1 x^3e^{x^2}\,dx &= \int\limits_0^1 x^2e^{x^2}x\,dx\\[5pt] &= \left\{\begin{align} u &= x^2\\[5pt] du &= \bigl(x^2\bigr)'\,dx = 2x\,dx \end{align}\right\}\\[5pt] &= \int\limits_0^1 ue^u\tfrac{1}{2}\,du\\[5pt] &= \frac{1}{2}\int\limits_0^1 ue^u\,du\,\textrm{.} \end{align} | 
We can then calculate this integral by integration by parts, where we differentiate away the factor \displaystyle u,
| \displaystyle \begin{align} \frac{1}{2}\int\limits_0^1 ue^u\,du &= \frac{1}{2}\Bigl[\ ue^u\ \Bigr]_0^1 - \frac{1}{2}\int\limits_0^1 1\cdot e^u\,du\\[5pt] &= \frac{1}{2}\bigl(1\cdot e^1-0\bigr) - \frac{1}{2}\Bigl[\ e^u\ \Bigr]_0^1\\[5pt] &= \frac{1}{2}e - \frac{1}{2}\bigl(e^1-e^0\bigr)\\[5pt] &= \frac{1}{2}e - \frac{1}{2}e + \frac{1}{2}\\[5pt] &= \frac{1}{2}\,\textrm{.} \end{align} | 
 
		  