Lösung 3.4:7b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.4:7b moved to Solution 3.4:7b: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | According to the factor theorem, a polynomial that has the zeros |
| - | < | + | <math>-\text{1}+i</math> |
| - | {{ | + | and |
| + | <math>-\text{1}-i</math> | ||
| + | must contain the factors | ||
| + | <math>z-\left( -\text{1}+i \right)</math> | ||
| + | and | ||
| + | <math>z-\left( -\text{1}-i \right)</math>. An example of such a polynomial is | ||
| + | |||
| + | |||
| + | <math>\left( z-\left( -\text{1}+i \right) \right)\left( z-\left( -\text{1}-i \right) \right)=z^{2}+2z+2</math> | ||
| + | |||
| + | |||
| + | NOTE: If one wants to have all the polynomials which have only these zeros, the answer is | ||
| + | |||
| + | |||
| + | <math>C\left( z+1-i \right)^{m}\left( z+1+i \right)^{n}</math> | ||
| + | |||
| + | |||
| + | where | ||
| + | <math>C</math> | ||
| + | is a non-zero constant and | ||
| + | <math>m</math> | ||
| + | and | ||
| + | <math>n</math> | ||
| + | are positive integers. | ||
Version vom 15:55, 28. Okt. 2008
According to the factor theorem, a polynomial that has the zeros \displaystyle -\text{1}+i and \displaystyle -\text{1}-i must contain the factors \displaystyle z-\left( -\text{1}+i \right) and \displaystyle z-\left( -\text{1}-i \right). An example of such a polynomial is
\displaystyle \left( z-\left( -\text{1}+i \right) \right)\left( z-\left( -\text{1}-i \right) \right)=z^{2}+2z+2
NOTE: If one wants to have all the polynomials which have only these zeros, the answer is
\displaystyle C\left( z+1-i \right)^{m}\left( z+1+i \right)^{n}
where
\displaystyle C
is a non-zero constant and
\displaystyle m
and
\displaystyle n
are positive integers.
