Lösung 2.2:4c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b, | The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b, | ||
+ | {{Displayed math||<math>\int \frac{dx}{x^2+4x+8} = \int \frac{dx}{(x+2)^2-2^2+8} = \int \frac{dx}{(x+2)^2+4}\,\textrm{.}</math>}} | ||
- | + | We take out a factor 4 from the denominator | |
- | + | ||
- | + | ||
- | We take out a factor | + | |
- | + | ||
- | from the denominator | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\int \frac{dx}{(x+2)^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}(x+2)^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1}</math>}} | ||
and rewrite the quadratic term as | and rewrite the quadratic term as | ||
+ | {{Displayed math||<math>\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1} = \frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}\,\textrm{.}</math>}} | ||
- | + | If we now substitute <math>u = (x+2)/2</math>, we obtain the integral in the exercise | |
- | + | ||
- | + | ||
- | If we now substitute | + | |
- | <math>u= | + | |
- | + | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | + | \frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1} | |
- | u= | + | &= \left\{\begin{align} |
- | du= | + | u &= (x+2)/2\\[5pt] |
- | \end{ | + | du &= dx/2 |
- | & =\frac{1}{4}\int | + | \end{align}\right\}\\[5pt] |
- | & =\frac{1}{2}\arctan u+C \\ | + | &= \frac{1}{4}\int \frac{2\,du}{u^2+1}\\[5pt] |
- | & =\frac{1}{2}\arctan \frac{x+2}{2}+C \\ | + | &= \frac{1}{2}\int \frac{du}{u^2+1}\\[5pt] |
- | \end{align}</math> | + | &= \frac{1}{2}\arctan u + C\\[5pt] |
+ | &= \frac{1}{2}\arctan \frac{x+2}{2} + C\,\textrm{.} | ||
+ | \end{align}</math>}} |
Version vom 15:27, 28. Okt. 2008
The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,
\displaystyle \int \frac{dx}{x^2+4x+8} = \int \frac{dx}{(x+2)^2-2^2+8} = \int \frac{dx}{(x+2)^2+4}\,\textrm{.} |
We take out a factor 4 from the denominator
\displaystyle \int \frac{dx}{(x+2)^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}(x+2)^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1} |
and rewrite the quadratic term as
\displaystyle \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1} = \frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}\,\textrm{.} |
If we now substitute \displaystyle u = (x+2)/2, we obtain the integral in the exercise
\displaystyle \begin{align}
\frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1} &= \left\{\begin{align} u &= (x+2)/2\\[5pt] du &= dx/2 \end{align}\right\}\\[5pt] &= \frac{1}{4}\int \frac{2\,du}{u^2+1}\\[5pt] &= \frac{1}{2}\int \frac{du}{u^2+1}\\[5pt] &= \frac{1}{2}\arctan u + C\\[5pt] &= \frac{1}{2}\arctan \frac{x+2}{2} + C\,\textrm{.} \end{align} |