Lösung 2.2:4b
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | We could substitute | + | We could substitute <math>u=x-1</math>, but we would then still have the problem of the second term, 3, in the denominator. Instead, we take out a factor 3 from the denominator, |
- | <math>u=x- | + | |
- | + | ||
- | in the denominator. Instead, we take out a factor | + | |
- | + | ||
- | from the denominator, | + | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \int \frac{dx}{(x-1)^2+3} | ||
+ | &= \int \frac{dx}{3\bigl(\tfrac{1}{3}(x-1)^2+1\bigr)}\\[5pt] | ||
+ | &= \frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} | ||
+ | \end{align}</math>}} | ||
- | <math>\ | + | and move a factor <math>\tfrac{1}{3}</math> into the square <math>(x-1)^2</math>, |
- | + | ||
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} = \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}\,\textrm{.}</math>}} | |
- | <math>\frac{1}{3} | + | |
- | + | ||
- | + | ||
+ | Now, we substitute <math>u = (x-1)/\!\sqrt{3}</math> and get rid of all the problems at once, | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | + | \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1} | |
- | + | &= \left\{\begin{align} | |
- | + | u &= (x-1)/\!\sqrt{3}\\[5pt] | |
- | + | du &= dx/\!\sqrt{3} | |
- | + | \end{align}\right\}\\[5pt] | |
- | + | &= \frac{1}{3}\int \frac{\sqrt{3}\,du}{u^2+1}\\[5pt] | |
- | <math>\begin{align} | + | &= \frac{\sqrt{3}}{3}\int \frac{du}{u^2+1}\\[5pt] |
- | + | &= \frac{1}{\sqrt{3}}\arctan u + C\\[5pt] | |
- | u= | + | &= \frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}} + C\,\textrm{.} |
- | du=\ | + | \end{align}</math>}} |
- | \end{ | + | |
- | & =\frac{1}{3}\int | + | |
- | & =\frac{1}{\sqrt{3}}\arctan u+C \\ | + | |
- | & =\frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}}+C \\ | + | |
- | \end{align}</math> | + |
Version vom 15:15, 28. Okt. 2008
We could substitute \displaystyle u=x-1, but we would then still have the problem of the second term, 3, in the denominator. Instead, we take out a factor 3 from the denominator,
\displaystyle \begin{align}
\int \frac{dx}{(x-1)^2+3} &= \int \frac{dx}{3\bigl(\tfrac{1}{3}(x-1)^2+1\bigr)}\\[5pt] &= \frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} \end{align} |
and move a factor \displaystyle \tfrac{1}{3} into the square \displaystyle (x-1)^2,
\displaystyle \frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} = \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}\,\textrm{.} |
Now, we substitute \displaystyle u = (x-1)/\!\sqrt{3} and get rid of all the problems at once,
\displaystyle \begin{align}
\frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1} &= \left\{\begin{align} u &= (x-1)/\!\sqrt{3}\\[5pt] du &= dx/\!\sqrt{3} \end{align}\right\}\\[5pt] &= \frac{1}{3}\int \frac{\sqrt{3}\,du}{u^2+1}\\[5pt] &= \frac{\sqrt{3}}{3}\int \frac{du}{u^2+1}\\[5pt] &= \frac{1}{\sqrt{3}}\arctan u + C\\[5pt] &= \frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}} + C\,\textrm{.} \end{align} |