Lösung 2.2:4a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
What makes our integral differ from that in the exercise´s text is that there is a term
+
What makes our integral differ from that in the exercise´s text is that there is a term <math>x^2+4</math> instead of <math>x^2+1</math>, but if we factor out the 4 from the denominator,
-
<math>x^{2}+4</math>
+
-
instead of
+
-
<math>x^{2}+1</math>, but if we factor out the 4 from the denominator,
+
 +
{{Displayed math||<math>\int \frac{dx}{x^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}x^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1}\,\textrm{,}</math>}}
-
<math>\int{\frac{\,dx}{x^{2}+4}}=\int{\frac{\,dx}{4\left( \frac{1}{4}x^{2}+1 \right)}}=\frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}x^{2}+1}}</math>,
+
we obtain the correct second term in the denominator. On the other hand, there is no longer <math>x^2</math> but <math>\tfrac{1}{4}x^2</math>, although we can get around this by substituting <math>u=\tfrac{1}{2}x</math>,
-
we obtain the correct second term in the denominator. On the other hand, there is no longer
+
{{Displayed math||<math>\begin{align}
-
<math>x^{2}</math>
+
\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1}
-
but
+
&= \frac{1}{4}\int \frac{dx}{(x/2)^2+1}
-
<math>\frac{1}{4}x^{2}</math>, although we can get around this by substituting
+
= \left\{\begin{align}
-
<math>u=\frac{1}{2}x</math>,
+
u &= x/2\\[5pt]
-
 
+
du &= \tfrac{1}{2}\,dx
-
 
+
\end{align}\right\}\\[5pt]
-
<math>\begin{align}
+
&= \frac{1}{4}\int \frac{2\,du}{u^2+1}
-
& \frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}x^{2}+1}}=\frac{1}{4}\int{\frac{\,dx}{\left( \frac{x}{2} \right)^{2}+1}}=\left\{ \begin{matrix}
+
= \frac{1}{2}\int\frac{du}{u^2+1}\\[5pt]
-
u=\frac{1}{2}x \\
+
&= \frac{1}{2}\arctan u + C
-
du=\frac{1}{2}\,dx \\
+
= \frac{1}{2}\arctan \frac{x}{2} + C\,\textrm{.}
-
\end{matrix} \right\} \\
+
\end{align}</math>}}
-
& =\frac{1}{4}\int{\frac{2\,du}{u^{2}+1}}=\frac{1}{2}\int{\frac{\,du}{u^{2}+1}} \\
+
-
& =\frac{1}{2}\arctan u+C=\frac{1}{2}\arctan \frac{x}{2}+C \\
+
-
\end{align}</math>
+

Version vom 15:02, 28. Okt. 2008

What makes our integral differ from that in the exercise´s text is that there is a term \displaystyle x^2+4 instead of \displaystyle x^2+1, but if we factor out the 4 from the denominator,

\displaystyle \int \frac{dx}{x^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}x^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1}\,\textrm{,}

we obtain the correct second term in the denominator. On the other hand, there is no longer \displaystyle x^2 but \displaystyle \tfrac{1}{4}x^2, although we can get around this by substituting \displaystyle u=\tfrac{1}{2}x,

\displaystyle \begin{align}

\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1} &= \frac{1}{4}\int \frac{dx}{(x/2)^2+1} = \left\{\begin{align} u &= x/2\\[5pt] du &= \tfrac{1}{2}\,dx \end{align}\right\}\\[5pt] &= \frac{1}{4}\int \frac{2\,du}{u^2+1} = \frac{1}{2}\int\frac{du}{u^2+1}\\[5pt] &= \frac{1}{2}\arctan u + C = \frac{1}{2}\arctan \frac{x}{2} + C\,\textrm{.} \end{align}