Lösung 2.2:4a
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
- | What makes our integral differ from that in the exercise´s text | + | What makes our integral differ from that in the exercise´s text is that there is a term <math>x^2+4</math> instead of <math>x^2+1</math>, but if we factor out the 4 from the denominator, |
- | <math>x^ | + | |
- | instead of | + | |
- | <math>x^ | + | |
+ | {{Displayed math||<math>\int \frac{dx}{x^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}x^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1}\,\textrm{,}</math>}} | ||
- | <math> | + | we obtain the correct second term in the denominator. On the other hand, there is no longer <math>x^2</math> but <math>\tfrac{1}{4}x^2</math>, although we can get around this by substituting <math>u=\tfrac{1}{2}x</math>, |
- | + | {{Displayed math||<math>\begin{align} | |
- | + | \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1} | |
- | + | &= \frac{1}{4}\int \frac{dx}{(x/2)^2+1} | |
- | + | = \left\{\begin{align} | |
- | + | u &= x/2\\[5pt] | |
- | + | du &= \tfrac{1}{2}\,dx | |
- | + | \end{align}\right\}\\[5pt] | |
- | <math>\begin{align} | + | &= \frac{1}{4}\int \frac{2\,du}{u^2+1} |
- | + | = \frac{1}{2}\int\frac{du}{u^2+1}\\[5pt] | |
- | u= | + | &= \frac{1}{2}\arctan u + C |
- | du=\ | + | = \frac{1}{2}\arctan \frac{x}{2} + C\,\textrm{.} |
- | \end{ | + | \end{align}</math>}} |
- | & =\frac{1}{4}\int | + | |
- | & =\frac{1}{2}\arctan u+C=\frac{1}{2}\arctan \frac{x}{2}+C \\ | + | |
- | \end{align}</math> | + |
Version vom 15:02, 28. Okt. 2008
What makes our integral differ from that in the exercise´s text is that there is a term \displaystyle x^2+4 instead of \displaystyle x^2+1, but if we factor out the 4 from the denominator,
\displaystyle \int \frac{dx}{x^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}x^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1}\,\textrm{,} |
we obtain the correct second term in the denominator. On the other hand, there is no longer \displaystyle x^2 but \displaystyle \tfrac{1}{4}x^2, although we can get around this by substituting \displaystyle u=\tfrac{1}{2}x,
\displaystyle \begin{align}
\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1} &= \frac{1}{4}\int \frac{dx}{(x/2)^2+1} = \left\{\begin{align} u &= x/2\\[5pt] du &= \tfrac{1}{2}\,dx \end{align}\right\}\\[5pt] &= \frac{1}{4}\int \frac{2\,du}{u^2+1} = \frac{1}{2}\int\frac{du}{u^2+1}\\[5pt] &= \frac{1}{2}\arctan u + C = \frac{1}{2}\arctan \frac{x}{2} + C\,\textrm{.} \end{align} |