Lösung 2.2:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
It is simpler to investigate the integral if we write it as
It is simpler to investigate the integral if we write it as
 +
{{Displayed math||<math>\int \ln x\cdot\frac{1}{x}\,dx\,,</math>}}
-
<math>\int{\ln x\centerdot \frac{1}{x}\,dx}</math>,
+
The derivative of <math>\ln x</math> is <math>1/x</math>, so if we choose <math>u = \ln x</math>, the integral can be expressed as
-
The derivative of
+
{{Displayed math||<math>\int u\cdot u'\,dx\,\textrm{.}</math>}}
-
<math>\ln x</math>
+
-
is
+
-
<math>\frac{1}{x}</math>, so if we choose
+
-
<math>u=\ln x</math>, the integral can be expressed as
+
 +
Thus, it seems that <math>u=\ln x</math> is a useful substitution,
-
<math>\int{u\centerdot {u}'\,dx}</math>
+
{{Displayed math||<math>\begin{align}
-
 
+
\int \ln x\cdot\frac{1}{x}\,dx
-
 
+
&= \left\{\begin{align}
-
Thus, it seems that
+
u &= \ln x\\[5pt]
-
<math>u=\ln x</math>
+
du &= (\ln x)'\,dx = (1/x)\,dx
-
is a useful substitution,
+
\end{align}\right\}\\[5pt]
-
 
+
&= \int u\,du\\[5pt]
-
 
+
&= \frac{1}{2}u^{2} + C\\[5pt]
-
<math>\begin{align}
+
&= \frac{1}{2}(\ln x)^2 + C\,\textrm{.}
-
& \int{\ln x\centerdot \frac{1}{x}\,dx}=\left\{ \begin{matrix}
+
\end{align}</math>}}
-
u=\ln x \\
+
-
du=\left( \ln x \right)^{\prime }\,dx=\frac{1}{x}\,dx \\
+
-
\end{matrix} \right\} \\
+
-
& =\int{u\,du=\frac{1}{2}u^{2}+C} \\
+
-
& =\frac{1}{2}\left( \ln x \right)^{2}+C \\
+
-
\end{align}</math>
+

Version vom 14:23, 28. Okt. 2008

It is simpler to investigate the integral if we write it as

\displaystyle \int \ln x\cdot\frac{1}{x}\,dx\,,

The derivative of \displaystyle \ln x is \displaystyle 1/x, so if we choose \displaystyle u = \ln x, the integral can be expressed as

\displaystyle \int u\cdot u'\,dx\,\textrm{.}

Thus, it seems that \displaystyle u=\ln x is a useful substitution,

\displaystyle \begin{align}

\int \ln x\cdot\frac{1}{x}\,dx &= \left\{\begin{align} u &= \ln x\\[5pt] du &= (\ln x)'\,dx = (1/x)\,dx \end{align}\right\}\\[5pt] &= \int u\,du\\[5pt] &= \frac{1}{2}u^{2} + C\\[5pt] &= \frac{1}{2}(\ln x)^2 + C\,\textrm{.} \end{align}