Lösung 2.2:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K
Zeile 1: Zeile 1:
-
If we focus on the integrand, then the substitution
+
If we focus on the integrand, then the substitution <math>u=3x+1</math> seems suitable, since we then get <math>\sqrt{u}</math> which we can integrate. There is also no risk involved in using a linear substitution such as <math>u=3x+1</math>, because the relation between <math>dx</math> and <math>du</math> will be a constant factor,
-
<math>u=\text{3}x+\text{1}</math>
+
-
seems suitable, since we then get
+
-
<math>\sqrt{u}</math>
+
-
which we can integrate. There is also no risk involved in using a linear substitution such as
+
-
<math>u=\text{3}x+\text{1}</math>, because the relation between
+
-
<math>dx\text{ }</math>
+
-
and
+
-
<math>du</math>
+
-
will be a constant factor,
+
-
 
+
-
 
+
-
<math>du=\left( \text{3}x+\text{1} \right)^{\prime }\,dx=3\,dx</math>
+
 +
{{Displayed math||<math>du = (3x+1)'\,dx = 3\,dx\,,</math>}}
which does not cause any problems.
which does not cause any problems.
Zeile 18: Zeile 7:
We obtain
We obtain
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\int\limits_0^5 \sqrt{3x+1}\,dx
-
& \int\limits_{0}^{5}{\sqrt{3x+1}}\,dx=\left\{ \begin{matrix}
+
&= \left\{\begin{align}
-
u=\text{3}x+\text{1} \\
+
u &= 3x+1\\[5pt]
-
du=3\,dx \\
+
du &= 3\,dx
-
\end{matrix} \right\}=\frac{1}{3}\int\limits_{1}^{16}{\sqrt{u}}\,du \\
+
\end{align}\right\} = \frac{1}{3}\int\limits_1^{16} \sqrt{u}\,du\\[5pt]
-
& =\frac{1}{3}\int\limits_{1}^{16}{u^{{1}/{2}\;}}\,du=\frac{1}{3}\left[ \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right]_{1}^{16} \\
+
&= \frac{1}{3}\int\limits_1^{16} u^{1/2}\,du = \frac{1}{3}\biggl[\ \frac{u^{1/2+1}}{\tfrac{1}{2}+1}\ \biggr]_1^{16}\\[5pt]
-
& =\frac{1}{3}\left[ \frac{2}{3}u\sqrt{u} \right]_{1}^{16}=\frac{2}{9}\left( 16\sqrt{16}-1\sqrt{1} \right) \\
+
&= \frac{1}{3}\Bigl[\ \frac{2}{3}u\sqrt{u}\ \Bigr]_1^{16} = \frac{2}{9}\bigl( 16\sqrt{16}-1\sqrt{1} \bigr)\\[8pt]
-
& =\frac{2}{9}\left( 16\centerdot 4-1 \right)=\frac{2\centerdot 63}{9}=14 \\
+
&= \frac{2}{9}\bigl( 16\cdot 4-1 \bigr) = \frac{2\cdot 63}{9} = 14\,\textrm{.}
-
\end{align}</math>
+
\end{align}</math>}}

Version vom 13:36, 28. Okt. 2008

If we focus on the integrand, then the substitution \displaystyle u=3x+1 seems suitable, since we then get \displaystyle \sqrt{u} which we can integrate. There is also no risk involved in using a linear substitution such as \displaystyle u=3x+1, because the relation between \displaystyle dx and \displaystyle du will be a constant factor,

\displaystyle du = (3x+1)'\,dx = 3\,dx\,,

which does not cause any problems.

We obtain

\displaystyle \begin{align}

\int\limits_0^5 \sqrt{3x+1}\,dx &= \left\{\begin{align} u &= 3x+1\\[5pt] du &= 3\,dx \end{align}\right\} = \frac{1}{3}\int\limits_1^{16} \sqrt{u}\,du\\[5pt] &= \frac{1}{3}\int\limits_1^{16} u^{1/2}\,du = \frac{1}{3}\biggl[\ \frac{u^{1/2+1}}{\tfrac{1}{2}+1}\ \biggr]_1^{16}\\[5pt] &= \frac{1}{3}\Bigl[\ \frac{2}{3}u\sqrt{u}\ \Bigr]_1^{16} = \frac{2}{9}\bigl( 16\sqrt{16}-1\sqrt{1} \bigr)\\[8pt] &= \frac{2}{9}\bigl( 16\cdot 4-1 \bigr) = \frac{2\cdot 63}{9} = 14\,\textrm{.} \end{align}