Lösung 3.4:1e
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.4:1e moved to Solution 3.4:1e: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Imagine for a moment taking away all the terms in the numerator apart from |
- | < | + | <math>x^{3}</math>. If we are to make |
- | {{ | + | <math>x^{3}</math> |
+ | divisible by the denominator | ||
+ | <math>x^{2}+3x+1</math>, we need to add and subtract | ||
+ | <math>3x^{2}+x</math> | ||
+ | in order to obtain the expression | ||
+ | <math>x^{3}+3x^{2}+x=x\left( x^{2}+3x+1 \right)</math>, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{x^{3}+2x^{2}+1}{x^{2}+3x+1}=\frac{x^{3}+\underline{3x^{2}+x-3x^{2}-x}+2x^{2}+1}{x^{2}+3x+1} \\ | ||
+ | & =\frac{x^{3}+3x^{2}+x}{x^{2}+3x+1}+\frac{-3x^{2}-x+2x^{2}+1}{x^{2}+3x+1} \\ | ||
+ | & =\frac{x\left( x^{2}+3x+1 \right)}{x^{2}+3x+1}+\frac{-x^{2}-x+1}{x^{2}+3x+1} \\ | ||
+ | & =x+\frac{-x^{2}-x+1}{x^{2}+3x+1} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Now, we carry out the same procedure with the new quotient. To the term | ||
+ | <math>-x^{2}</math>, we add and subtract | ||
+ | <math>-\text{3}x-\text{1}</math> | ||
+ | and obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x+\frac{-x^{2}-x+1}{x^{2}+3x+1}=x+\frac{-x^{2}\underline{-3x-1+3x+1}-x+1}{x^{2}+3x+1} \\ | ||
+ | & =x+\frac{-x^{2}-3x-1}{x^{2}+3x+1}+\frac{3x+1-x+1}{x^{2}+3x+1} \\ | ||
+ | & =x-1+\frac{2x+2}{x^{2}+3x+1} \\ | ||
+ | \end{align}</math> |
Version vom 13:42, 26. Okt. 2008
Imagine for a moment taking away all the terms in the numerator apart from \displaystyle x^{3}. If we are to make \displaystyle x^{3} divisible by the denominator \displaystyle x^{2}+3x+1, we need to add and subtract \displaystyle 3x^{2}+x in order to obtain the expression \displaystyle x^{3}+3x^{2}+x=x\left( x^{2}+3x+1 \right),
\displaystyle \begin{align}
& \frac{x^{3}+2x^{2}+1}{x^{2}+3x+1}=\frac{x^{3}+\underline{3x^{2}+x-3x^{2}-x}+2x^{2}+1}{x^{2}+3x+1} \\
& =\frac{x^{3}+3x^{2}+x}{x^{2}+3x+1}+\frac{-3x^{2}-x+2x^{2}+1}{x^{2}+3x+1} \\
& =\frac{x\left( x^{2}+3x+1 \right)}{x^{2}+3x+1}+\frac{-x^{2}-x+1}{x^{2}+3x+1} \\
& =x+\frac{-x^{2}-x+1}{x^{2}+3x+1} \\
\end{align}
Now, we carry out the same procedure with the new quotient. To the term
\displaystyle -x^{2}, we add and subtract
\displaystyle -\text{3}x-\text{1}
and obtain
\displaystyle \begin{align}
& x+\frac{-x^{2}-x+1}{x^{2}+3x+1}=x+\frac{-x^{2}\underline{-3x-1+3x+1}-x+1}{x^{2}+3x+1} \\
& =x+\frac{-x^{2}-3x-1}{x^{2}+3x+1}+\frac{3x+1-x+1}{x^{2}+3x+1} \\
& =x-1+\frac{2x+2}{x^{2}+3x+1} \\
\end{align}