Lösung 3.4:1a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.4:1a moved to Solution 3.4:1a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | The numerator can be factorized using the conjugate rule to give | |
- | < | + | <math>x^{2}-1=\left( x+1 \right)\left( x-1 \right)</math> |
- | {{ | + | and then we see that the numerator and denominator have a common factor which we can eliminate |
+ | |||
+ | |||
+ | <math>\frac{x^{2}-1}{x-1}=\frac{\left( x+1 \right)\left( x-1 \right)}{x-1}=x+1</math> |
Version vom 12:30, 26. Okt. 2008
The numerator can be factorized using the conjugate rule to give \displaystyle x^{2}-1=\left( x+1 \right)\left( x-1 \right) and then we see that the numerator and denominator have a common factor which we can eliminate
\displaystyle \frac{x^{2}-1}{x-1}=\frac{\left( x+1 \right)\left( x-1 \right)}{x-1}=x+1