Lösung 3.3:5d
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.3:5d moved to Solution 3.3:5d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Let us first divide both sides by |
- | < | + | <math>4+i</math>, so that the coefficient in front of |
- | {{ | + | <math>z^{2}</math> |
- | {{ | + | becomes |
- | < | + | <math>\text{1}</math>, |
- | {{ | + | |
- | {{ | + | |
- | < | + | <math>z^{2}+\frac{1-21i}{4+i}z=\frac{17}{4+i}</math> |
- | {{ | + | |
- | {{ | + | |
- | < | + | The two complex quotients become |
- | {{ | + | |
- | {{ | + | |
- | < | + | <math>\begin{align} |
- | {{ | + | & \frac{\left( 1-21i \right)\left( 4-i \right)}{\left( 4+i \right)\left( 4-i \right)}=\frac{4-i-84i+21i^{2}}{4^{2}-i^{2}} \\ |
+ | & =\frac{-17-85i}{16+1}=\frac{-17-85i}{17}=-1-5i \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{17}{4+i}=\frac{17\left( 4-i \right)}{\left( 4+i \right)\left( 4-i \right)}=\frac{17\left( 4-i \right)}{4^{2}-i^{2}} \\ | ||
+ | & =\frac{17\left( 4-i \right)}{17}=4-i \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Thus, the equation becomes | ||
+ | |||
+ | |||
+ | <math>z^{2}-\left( 1+5i \right)z=4-i</math> | ||
+ | |||
+ | |||
+ | Now, we complete the square of the left-hand side: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( z-\frac{1+5i}{2} \right)^{2}-\left( \frac{1+5i}{2} \right)^{2}=4-i \\ | ||
+ | & \left( z-\frac{1+5i}{2} \right)^{2}-\left( \frac{1}{4}+\frac{5}{2}i+\frac{25}{4}i^{2} \right)=4-i \\ | ||
+ | & \left( z-\frac{1+5i}{2} \right)^{2}-\frac{1}{4}-\frac{5}{2}i+\frac{25}{4}=4-i \\ | ||
+ | & \left( z-\frac{1+5i}{2} \right)^{2}=-2+\frac{3}{2}i \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | If we set | ||
+ | <math>w=z-\frac{1+5i}{2}</math>, we have a binomial equation in | ||
+ | <math>w</math>, | ||
+ | |||
+ | |||
+ | <math>w^{2}=-2+\frac{3}{2}i</math> | ||
+ | |||
+ | |||
+ | which we solve by putting | ||
+ | <math>w=x+iy\text{ }</math>, | ||
+ | |||
+ | |||
+ | <math>\left( x+iy \right)^{2}=-2+\frac{3}{2}i</math> | ||
+ | |||
+ | |||
+ | or, if the left-hand side is expanded, | ||
+ | |||
+ | |||
+ | <math>x^{2}-y^{2}+2xyi=-2+\frac{3}{2}i</math> | ||
+ | |||
+ | |||
+ | If we identify the real and imaginary parts on both sides, we get | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x^{2}-y^{2}=-2 \\ | ||
+ | & 2xy=\frac{3}{2} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation: | ||
+ | |||
+ | |||
+ | <math>x^{2}+y^{2}=\sqrt{\left( -2 \right)^{2}+\left( \frac{3}{2} \right)^{2}}=\frac{5}{2}</math> | ||
+ | |||
+ | |||
+ | Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier. | ||
+ | |||
+ | Together, the three relations constitute the following system of equations: | ||
+ | |||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | \ x^{2}-y^{2}=2 \\ | ||
+ | \ 2xy=-\frac{3}{2} \\ | ||
+ | \ x^{2}+y^{2}=\frac{5}{2} \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | |||
+ | From the first and the third equations, we can relatively easily obtain the values that | ||
+ | <math>x</math> | ||
+ | and | ||
+ | <math>y</math> | ||
+ | can take. | ||
+ | |||
+ | Add the first and third equations, | ||
+ | |||
+ | EQ1 | ||
+ | |||
+ | which gives that | ||
+ | <math>x=\pm \frac{1}{2}</math>. | ||
+ | |||
+ | Then, subtract the first equation from the third equation, | ||
+ | |||
+ | EQ13 | ||
+ | |||
+ | i.e. | ||
+ | <math>y=\pm \frac{3}{2}</math>. | ||
+ | |||
+ | This gives four possible combinations, | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{1}{2} \\ | ||
+ | y=\frac{3}{2} \\ | ||
+ | \end{array} \right.\quad \left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{1}{2} \\ | ||
+ | y=-\frac{3}{2} \\ | ||
+ | \end{array} \right.\quad \left\{ \begin{array}{*{35}l} | ||
+ | x=-\frac{1}{2} \\ | ||
+ | y=\frac{3}{2} \\ | ||
+ | \end{array} \right.\quad \left\{ \begin{array}{*{35}l} | ||
+ | x=-\frac{1}{2} \\ | ||
+ | y=-\frac{3}{2} \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | of which only two also satisfy the second equation. | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{1}{2} \\ | ||
+ | y=\frac{3}{2} \\ | ||
+ | \end{array} \right.\quad \quad \text{and}\quad \quad \left\{ \begin{array}{*{35}l} | ||
+ | x=-\frac{1}{2} \\ | ||
+ | y=-\frac{3}{2} \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | This means that the binomial equation has the two solutions, | ||
+ | |||
+ | |||
+ | |||
+ | <math>w=\frac{1}{2}+\frac{3}{2}i</math> | ||
+ | and | ||
+ | <math>w=\frac{1}{-2}-\frac{3}{2}i</math> | ||
+ | |||
+ | |||
+ | and that the original equation has the solutions | ||
+ | |||
+ | |||
+ | <math>z=1+4i</math> | ||
+ | and | ||
+ | <math>z=i</math> | ||
+ | |||
+ | according to the relation | ||
+ | <math>w=z-\frac{1+5i}{2}</math>. | ||
+ | |||
+ | Finally, we check that the solutions really do satisfy the equation. | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 1+4i:\quad \left( 4+i \right)z^{2}+\left( 1-21i \right)z \\ | ||
+ | & =\left( 4+i \right)\left( 1+4i \right)^{2}+\left( 1-21i \right)\left( 1+4i \right) \\ | ||
+ | & =\left( 4+i \right)\left( 1+8i+16i^{2} \right)+\left( 1+4i-21i-84i^{2} \right) \\ | ||
+ | & =\left( 4+i \right)\left( -15+8i \right)+1-17i+84 \\ | ||
+ | & =-60+32i-15i+8i^{2}+1-17i+84 \\ | ||
+ | & =-60+32i-15i-8+1-17i+84=17 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z=i:\quad \left( 4+i \right)z^{2}+\left( 1-21i \right)z \\ | ||
+ | & =\left( 4+i \right)i^{2}+\left( 1-21i \right)i \\ | ||
+ | & =\left( 4+i \right)\left( -1 \right)+i-21i^{2} \\ | ||
+ | & =-4-i+i+21=17 \\ | ||
+ | \end{align}</math> |
Version vom 11:32, 26. Okt. 2008
Let us first divide both sides by \displaystyle 4+i, so that the coefficient in front of \displaystyle z^{2} becomes \displaystyle \text{1},
\displaystyle z^{2}+\frac{1-21i}{4+i}z=\frac{17}{4+i}
The two complex quotients become
\displaystyle \begin{align}
& \frac{\left( 1-21i \right)\left( 4-i \right)}{\left( 4+i \right)\left( 4-i \right)}=\frac{4-i-84i+21i^{2}}{4^{2}-i^{2}} \\
& =\frac{-17-85i}{16+1}=\frac{-17-85i}{17}=-1-5i \\
\end{align}
\displaystyle \begin{align} & \frac{17}{4+i}=\frac{17\left( 4-i \right)}{\left( 4+i \right)\left( 4-i \right)}=\frac{17\left( 4-i \right)}{4^{2}-i^{2}} \\ & =\frac{17\left( 4-i \right)}{17}=4-i \\ \end{align}
Thus, the equation becomes
\displaystyle z^{2}-\left( 1+5i \right)z=4-i
Now, we complete the square of the left-hand side:
\displaystyle \begin{align}
& \left( z-\frac{1+5i}{2} \right)^{2}-\left( \frac{1+5i}{2} \right)^{2}=4-i \\
& \left( z-\frac{1+5i}{2} \right)^{2}-\left( \frac{1}{4}+\frac{5}{2}i+\frac{25}{4}i^{2} \right)=4-i \\
& \left( z-\frac{1+5i}{2} \right)^{2}-\frac{1}{4}-\frac{5}{2}i+\frac{25}{4}=4-i \\
& \left( z-\frac{1+5i}{2} \right)^{2}=-2+\frac{3}{2}i \\
\end{align}
If we set
\displaystyle w=z-\frac{1+5i}{2}, we have a binomial equation in
\displaystyle w,
\displaystyle w^{2}=-2+\frac{3}{2}i
which we solve by putting
\displaystyle w=x+iy\text{ },
\displaystyle \left( x+iy \right)^{2}=-2+\frac{3}{2}i
or, if the left-hand side is expanded,
\displaystyle x^{2}-y^{2}+2xyi=-2+\frac{3}{2}i
If we identify the real and imaginary parts on both sides, we get
\displaystyle \begin{align}
& x^{2}-y^{2}=-2 \\
& 2xy=\frac{3}{2} \\
\end{align}
and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation:
\displaystyle x^{2}+y^{2}=\sqrt{\left( -2 \right)^{2}+\left( \frac{3}{2} \right)^{2}}=\frac{5}{2}
Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier.
Together, the three relations constitute the following system of equations:
\displaystyle \left\{ \begin{array}{*{35}l} \ x^{2}-y^{2}=2 \\ \ 2xy=-\frac{3}{2} \\ \ x^{2}+y^{2}=\frac{5}{2} \\ \end{array} \right.
From the first and the third equations, we can relatively easily obtain the values that \displaystyle x and \displaystyle y can take.
Add the first and third equations,
EQ1
which gives that \displaystyle x=\pm \frac{1}{2}.
Then, subtract the first equation from the third equation,
EQ13
i.e. \displaystyle y=\pm \frac{3}{2}.
This gives four possible combinations,
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{1}{2} \\
y=\frac{3}{2} \\
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
x=\frac{1}{2} \\
y=-\frac{3}{2} \\
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
x=-\frac{1}{2} \\
y=\frac{3}{2} \\
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
x=-\frac{1}{2} \\
y=-\frac{3}{2} \\
\end{array} \right.
of which only two also satisfy the second equation.
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{1}{2} \\
y=\frac{3}{2} \\
\end{array} \right.\quad \quad \text{and}\quad \quad \left\{ \begin{array}{*{35}l}
x=-\frac{1}{2} \\
y=-\frac{3}{2} \\
\end{array} \right.
This means that the binomial equation has the two solutions,
\displaystyle w=\frac{1}{2}+\frac{3}{2}i and \displaystyle w=\frac{1}{-2}-\frac{3}{2}i
and that the original equation has the solutions
\displaystyle z=1+4i
and
\displaystyle z=i
according to the relation \displaystyle w=z-\frac{1+5i}{2}.
Finally, we check that the solutions really do satisfy the equation.
\displaystyle \begin{align} & 1+4i:\quad \left( 4+i \right)z^{2}+\left( 1-21i \right)z \\ & =\left( 4+i \right)\left( 1+4i \right)^{2}+\left( 1-21i \right)\left( 1+4i \right) \\ & =\left( 4+i \right)\left( 1+8i+16i^{2} \right)+\left( 1+4i-21i-84i^{2} \right) \\ & =\left( 4+i \right)\left( -15+8i \right)+1-17i+84 \\ & =-60+32i-15i+8i^{2}+1-17i+84 \\ & =-60+32i-15i-8+1-17i+84=17 \\ \end{align}
\displaystyle \begin{align} & z=i:\quad \left( 4+i \right)z^{2}+\left( 1-21i \right)z \\ & =\left( 4+i \right)i^{2}+\left( 1-21i \right)i \\ & =\left( 4+i \right)\left( -1 \right)+i-21i^{2} \\ & =-4-i+i+21=17 \\ \end{align}