Lösung 3.3:5c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:5c moved to Solution 3.3:5c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
As usual we begin by completing the square,
-
<center> [[Image:3_3_5c-1(4).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
<math>\begin{align}
-
<center> [[Image:3_3_5c-2(4).gif]] </center>
+
& \left( z-\frac{1+3i}{2} \right)^{2}-\left( \frac{1+3i}{2} \right)^{2}-4+3i=0 \\
-
{{NAVCONTENT_STOP}}
+
& \left( z-\frac{1+3i}{2} \right)^{2}-\left( \frac{1}{4}+\frac{3}{2}i+\frac{9}{4}i^{2} \right)-4+3i=0 \\
-
{{NAVCONTENT_START}}
+
& \left( z-\frac{1+3i}{2} \right)^{2}-\frac{1}{4}-\frac{3}{2}i+\frac{9}{4}-4+3i=0 \\
-
<center> [[Image:3_3_5c-3(4).gif]] </center>
+
& \left( z-\frac{1+3i}{2} \right)^{2}-2+\frac{3}{2}i=0 \\
-
{{NAVCONTENT_STOP}}
+
\end{align}</math>
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:3_3_5c-4(4).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
and if we treat as unknown, we have the equation's
 +
 
 +
 
 +
<math>w=z-\frac{1+3i}{2}</math>
 +
 
 +
 
 +
Up until now, we have solved binomial equations of this type by going over to polar form, but if we were to do that in this case, we would have a problem with determining the exact value of the argument of the right-hand side. Instead, we put
 +
<math>w=x+iy</math>
 +
and try to obtain
 +
<math>x</math>
 +
and
 +
<math>y</math>
 +
from the equation.
 +
 
 +
With
 +
<math>w=x+iy</math>, the equation becomes
 +
 
 +
 
 +
<math>\left( x+iy \right)^{2}=2-\frac{3}{2}i</math>
 +
 
 +
 
 +
and, with the left-hand side expanded,
 +
 
 +
 
 +
<math>x^{2}-y^{2}+2xyi=2-\frac{3}{2}i</math>
 +
 
 +
 
 +
If we set the real and imaginary part of both sides equal, we obtain the equation system
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
x^{2}-y^{2}=2 \\
 +
2xy=-\frac{3}{2} \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
We would very well be able to solve this system, but there is a further relation that we can obtain which will simplify the calculations. If we go back to the relation
 +
 
 +
 
 +
<math>\left( x+iy \right)^{2}=2-\frac{3}{2}i</math>
 +
 
 +
 
 +
and take the modulus of both sides, we obtain
 +
 
 +
 
 +
<math>x^{2}+y^{2}=\sqrt{2^{2}+\left( -\frac{3}{2} \right)^{2}}</math>
 +
 
 +
 
 +
 
 +
i.e.
 +
 
 +
 
 +
<math>x^{2}+y^{2}=\frac{5}{2}</math>
 +
 
 +
 
 +
We add this relation to our two other equations:
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
x^{2}-y^{2}=2 \\
 +
2xy=-\frac{3}{2} \\
 +
x^{2}+y^{2}=\frac{5}{2} \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
Now, add the first and third equations
 +
 
 +
EQU1
 +
 
 +
which gives that
 +
<math>y=\pm \frac{3}{2}</math>. Then, subtracting the first equation from the third,
 +
 
 +
EQU2
 +
 
 +
 
 +
we get
 +
<math>y=\pm \frac{1}{2}</math>. This gives potentially four solutions to the equation system,
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
x=\frac{3}{2} \\
 +
y=\frac{1}{2} \\
 +
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
 +
x=\frac{3}{2} \\
 +
y=-\frac{1}{2} \\
 +
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
 +
x=-\frac{3}{2} \\
 +
y=\frac{1}{2} \\
 +
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
 +
x=-\frac{3}{2} \\
 +
y=-\frac{1}{2} \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
but only two of these satisfy the second equation
 +
<math>2xy=-\frac{3}{2}</math>, namely
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
x=\frac{3}{2} \\
 +
y=-\frac{1}{2} \\
 +
\end{array} \right.\quad \quad \text{and}\quad \left\{ \begin{array}{*{35}l}
 +
x=-\frac{3}{2} \\
 +
y=\frac{1}{2} \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
Hence, we have that the solutions are
 +
 
 +
 
 +
<math>w=\frac{3-i}{2}</math>
 +
and
 +
<math>w=\frac{-3+i}{2}</math>
 +
 
 +
 
 +
or, expressed in
 +
<math>z</math>,
 +
 
 +
 
 +
<math>z=2+i</math>
 +
and
 +
<math>z=-1+2i</math>
 +
 
 +
 
 +
Because the calculation has been rather long, there is the risk that we have calculated incorrectly somewhere and we therefore check that the solutions satisfy the equation in the exercise:
 +
 
 +
 
 +
<math>\begin{align}
 +
& z=2+i:\quad z^{2}-\left( 1+3i \right)z-4+3i=\left( 2+i \right)^{2}-\left( 1+3i \right)\left( 2+i \right)-4+3i \\
 +
& =4+4i+i^{2}-\left( 2+i+6i+3i^{2} \right)-4+3i \\
 +
& =4+4i-1-2-7i+3-4+3i=0 \\
 +
\end{align}</math>
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& z=-1+2i:\quad z^{2}-\left( 1+3i \right)z-4+3i=\left( -1+2i \right)^{2}-\left( 1+3i \right)\left( -1+2i \right)-4+3i \\
 +
& =\left( -1 \right)^{2}-4i+4i^{2}-\left( -1+2i-3i+6i^{2} \right)-4+3i \\
 +
& =1-4i-4+1+i+6-4+3i=0 \\
 +
\end{align}</math>

Version vom 10:01, 26. Okt. 2008

As usual we begin by completing the square,


\displaystyle \begin{align} & \left( z-\frac{1+3i}{2} \right)^{2}-\left( \frac{1+3i}{2} \right)^{2}-4+3i=0 \\ & \left( z-\frac{1+3i}{2} \right)^{2}-\left( \frac{1}{4}+\frac{3}{2}i+\frac{9}{4}i^{2} \right)-4+3i=0 \\ & \left( z-\frac{1+3i}{2} \right)^{2}-\frac{1}{4}-\frac{3}{2}i+\frac{9}{4}-4+3i=0 \\ & \left( z-\frac{1+3i}{2} \right)^{2}-2+\frac{3}{2}i=0 \\ \end{align}


and if we treat as unknown, we have the equation's


\displaystyle w=z-\frac{1+3i}{2}


Up until now, we have solved binomial equations of this type by going over to polar form, but if we were to do that in this case, we would have a problem with determining the exact value of the argument of the right-hand side. Instead, we put \displaystyle w=x+iy and try to obtain \displaystyle x and \displaystyle y from the equation.

With \displaystyle w=x+iy, the equation becomes


\displaystyle \left( x+iy \right)^{2}=2-\frac{3}{2}i


and, with the left-hand side expanded,


\displaystyle x^{2}-y^{2}+2xyi=2-\frac{3}{2}i


If we set the real and imaginary part of both sides equal, we obtain the equation system


\displaystyle \left\{ \begin{array}{*{35}l} x^{2}-y^{2}=2 \\ 2xy=-\frac{3}{2} \\ \end{array} \right.


We would very well be able to solve this system, but there is a further relation that we can obtain which will simplify the calculations. If we go back to the relation


\displaystyle \left( x+iy \right)^{2}=2-\frac{3}{2}i


and take the modulus of both sides, we obtain


\displaystyle x^{2}+y^{2}=\sqrt{2^{2}+\left( -\frac{3}{2} \right)^{2}}


i.e.


\displaystyle x^{2}+y^{2}=\frac{5}{2}


We add this relation to our two other equations:


\displaystyle \left\{ \begin{array}{*{35}l} x^{2}-y^{2}=2 \\ 2xy=-\frac{3}{2} \\ x^{2}+y^{2}=\frac{5}{2} \\ \end{array} \right.


Now, add the first and third equations

EQU1

which gives that \displaystyle y=\pm \frac{3}{2}. Then, subtracting the first equation from the third,

EQU2


we get \displaystyle y=\pm \frac{1}{2}. This gives potentially four solutions to the equation system,


\displaystyle \left\{ \begin{array}{*{35}l} x=\frac{3}{2} \\ y=\frac{1}{2} \\ \end{array} \right.\quad \left\{ \begin{array}{*{35}l} x=\frac{3}{2} \\ y=-\frac{1}{2} \\ \end{array} \right.\quad \left\{ \begin{array}{*{35}l} x=-\frac{3}{2} \\ y=\frac{1}{2} \\ \end{array} \right.\quad \left\{ \begin{array}{*{35}l} x=-\frac{3}{2} \\ y=-\frac{1}{2} \\ \end{array} \right.


but only two of these satisfy the second equation \displaystyle 2xy=-\frac{3}{2}, namely


\displaystyle \left\{ \begin{array}{*{35}l} x=\frac{3}{2} \\ y=-\frac{1}{2} \\ \end{array} \right.\quad \quad \text{and}\quad \left\{ \begin{array}{*{35}l} x=-\frac{3}{2} \\ y=\frac{1}{2} \\ \end{array} \right.


Hence, we have that the solutions are


\displaystyle w=\frac{3-i}{2} and \displaystyle w=\frac{-3+i}{2}


or, expressed in \displaystyle z,


\displaystyle z=2+i and \displaystyle z=-1+2i


Because the calculation has been rather long, there is the risk that we have calculated incorrectly somewhere and we therefore check that the solutions satisfy the equation in the exercise:


\displaystyle \begin{align} & z=2+i:\quad z^{2}-\left( 1+3i \right)z-4+3i=\left( 2+i \right)^{2}-\left( 1+3i \right)\left( 2+i \right)-4+3i \\ & =4+4i+i^{2}-\left( 2+i+6i+3i^{2} \right)-4+3i \\ & =4+4i-1-2-7i+3-4+3i=0 \\ \end{align}


\displaystyle \begin{align} & z=-1+2i:\quad z^{2}-\left( 1+3i \right)z-4+3i=\left( -1+2i \right)^{2}-\left( 1+3i \right)\left( -1+2i \right)-4+3i \\ & =\left( -1 \right)^{2}-4i+4i^{2}-\left( -1+2i-3i+6i^{2} \right)-4+3i \\ & =1-4i-4+1+i+6-4+3i=0 \\ \end{align}