Lösung 3.3:5c
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.3:5c moved to Solution 3.3:5c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | As usual we begin by completing the square, |
- | + | ||
- | {{ | + | |
- | {{ | + | <math>\begin{align} |
- | < | + | & \left( z-\frac{1+3i}{2} \right)^{2}-\left( \frac{1+3i}{2} \right)^{2}-4+3i=0 \\ |
- | {{ | + | & \left( z-\frac{1+3i}{2} \right)^{2}-\left( \frac{1}{4}+\frac{3}{2}i+\frac{9}{4}i^{2} \right)-4+3i=0 \\ |
- | {{ | + | & \left( z-\frac{1+3i}{2} \right)^{2}-\frac{1}{4}-\frac{3}{2}i+\frac{9}{4}-4+3i=0 \\ |
- | < | + | & \left( z-\frac{1+3i}{2} \right)^{2}-2+\frac{3}{2}i=0 \\ |
- | {{ | + | \end{align}</math> |
- | {{ | + | |
- | < | + | |
- | {{ | + | and if we treat as unknown, we have the equation's |
+ | |||
+ | |||
+ | <math>w=z-\frac{1+3i}{2}</math> | ||
+ | |||
+ | |||
+ | Up until now, we have solved binomial equations of this type by going over to polar form, but if we were to do that in this case, we would have a problem with determining the exact value of the argument of the right-hand side. Instead, we put | ||
+ | <math>w=x+iy</math> | ||
+ | and try to obtain | ||
+ | <math>x</math> | ||
+ | and | ||
+ | <math>y</math> | ||
+ | from the equation. | ||
+ | |||
+ | With | ||
+ | <math>w=x+iy</math>, the equation becomes | ||
+ | |||
+ | |||
+ | <math>\left( x+iy \right)^{2}=2-\frac{3}{2}i</math> | ||
+ | |||
+ | |||
+ | and, with the left-hand side expanded, | ||
+ | |||
+ | |||
+ | <math>x^{2}-y^{2}+2xyi=2-\frac{3}{2}i</math> | ||
+ | |||
+ | |||
+ | If we set the real and imaginary part of both sides equal, we obtain the equation system | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x^{2}-y^{2}=2 \\ | ||
+ | 2xy=-\frac{3}{2} \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | We would very well be able to solve this system, but there is a further relation that we can obtain which will simplify the calculations. If we go back to the relation | ||
+ | |||
+ | |||
+ | <math>\left( x+iy \right)^{2}=2-\frac{3}{2}i</math> | ||
+ | |||
+ | |||
+ | and take the modulus of both sides, we obtain | ||
+ | |||
+ | |||
+ | <math>x^{2}+y^{2}=\sqrt{2^{2}+\left( -\frac{3}{2} \right)^{2}}</math> | ||
+ | |||
+ | |||
+ | |||
+ | i.e. | ||
+ | |||
+ | |||
+ | <math>x^{2}+y^{2}=\frac{5}{2}</math> | ||
+ | |||
+ | |||
+ | We add this relation to our two other equations: | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x^{2}-y^{2}=2 \\ | ||
+ | 2xy=-\frac{3}{2} \\ | ||
+ | x^{2}+y^{2}=\frac{5}{2} \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | Now, add the first and third equations | ||
+ | |||
+ | EQU1 | ||
+ | |||
+ | which gives that | ||
+ | <math>y=\pm \frac{3}{2}</math>. Then, subtracting the first equation from the third, | ||
+ | |||
+ | EQU2 | ||
+ | |||
+ | |||
+ | we get | ||
+ | <math>y=\pm \frac{1}{2}</math>. This gives potentially four solutions to the equation system, | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{3}{2} \\ | ||
+ | y=\frac{1}{2} \\ | ||
+ | \end{array} \right.\quad \left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{3}{2} \\ | ||
+ | y=-\frac{1}{2} \\ | ||
+ | \end{array} \right.\quad \left\{ \begin{array}{*{35}l} | ||
+ | x=-\frac{3}{2} \\ | ||
+ | y=\frac{1}{2} \\ | ||
+ | \end{array} \right.\quad \left\{ \begin{array}{*{35}l} | ||
+ | x=-\frac{3}{2} \\ | ||
+ | y=-\frac{1}{2} \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | but only two of these satisfy the second equation | ||
+ | <math>2xy=-\frac{3}{2}</math>, namely | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{3}{2} \\ | ||
+ | y=-\frac{1}{2} \\ | ||
+ | \end{array} \right.\quad \quad \text{and}\quad \left\{ \begin{array}{*{35}l} | ||
+ | x=-\frac{3}{2} \\ | ||
+ | y=\frac{1}{2} \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | Hence, we have that the solutions are | ||
+ | |||
+ | |||
+ | <math>w=\frac{3-i}{2}</math> | ||
+ | and | ||
+ | <math>w=\frac{-3+i}{2}</math> | ||
+ | |||
+ | |||
+ | or, expressed in | ||
+ | <math>z</math>, | ||
+ | |||
+ | |||
+ | <math>z=2+i</math> | ||
+ | and | ||
+ | <math>z=-1+2i</math> | ||
+ | |||
+ | |||
+ | Because the calculation has been rather long, there is the risk that we have calculated incorrectly somewhere and we therefore check that the solutions satisfy the equation in the exercise: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z=2+i:\quad z^{2}-\left( 1+3i \right)z-4+3i=\left( 2+i \right)^{2}-\left( 1+3i \right)\left( 2+i \right)-4+3i \\ | ||
+ | & =4+4i+i^{2}-\left( 2+i+6i+3i^{2} \right)-4+3i \\ | ||
+ | & =4+4i-1-2-7i+3-4+3i=0 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z=-1+2i:\quad z^{2}-\left( 1+3i \right)z-4+3i=\left( -1+2i \right)^{2}-\left( 1+3i \right)\left( -1+2i \right)-4+3i \\ | ||
+ | & =\left( -1 \right)^{2}-4i+4i^{2}-\left( -1+2i-3i+6i^{2} \right)-4+3i \\ | ||
+ | & =1-4i-4+1+i+6-4+3i=0 \\ | ||
+ | \end{align}</math> |
Version vom 10:01, 26. Okt. 2008
As usual we begin by completing the square,
\displaystyle \begin{align}
& \left( z-\frac{1+3i}{2} \right)^{2}-\left( \frac{1+3i}{2} \right)^{2}-4+3i=0 \\
& \left( z-\frac{1+3i}{2} \right)^{2}-\left( \frac{1}{4}+\frac{3}{2}i+\frac{9}{4}i^{2} \right)-4+3i=0 \\
& \left( z-\frac{1+3i}{2} \right)^{2}-\frac{1}{4}-\frac{3}{2}i+\frac{9}{4}-4+3i=0 \\
& \left( z-\frac{1+3i}{2} \right)^{2}-2+\frac{3}{2}i=0 \\
\end{align}
and if we treat as unknown, we have the equation's
\displaystyle w=z-\frac{1+3i}{2}
Up until now, we have solved binomial equations of this type by going over to polar form, but if we were to do that in this case, we would have a problem with determining the exact value of the argument of the right-hand side. Instead, we put
\displaystyle w=x+iy
and try to obtain
\displaystyle x
and
\displaystyle y
from the equation.
With \displaystyle w=x+iy, the equation becomes
\displaystyle \left( x+iy \right)^{2}=2-\frac{3}{2}i
and, with the left-hand side expanded,
\displaystyle x^{2}-y^{2}+2xyi=2-\frac{3}{2}i
If we set the real and imaginary part of both sides equal, we obtain the equation system
\displaystyle \left\{ \begin{array}{*{35}l}
x^{2}-y^{2}=2 \\
2xy=-\frac{3}{2} \\
\end{array} \right.
We would very well be able to solve this system, but there is a further relation that we can obtain which will simplify the calculations. If we go back to the relation
\displaystyle \left( x+iy \right)^{2}=2-\frac{3}{2}i
and take the modulus of both sides, we obtain
\displaystyle x^{2}+y^{2}=\sqrt{2^{2}+\left( -\frac{3}{2} \right)^{2}}
i.e.
\displaystyle x^{2}+y^{2}=\frac{5}{2}
We add this relation to our two other equations:
\displaystyle \left\{ \begin{array}{*{35}l}
x^{2}-y^{2}=2 \\
2xy=-\frac{3}{2} \\
x^{2}+y^{2}=\frac{5}{2} \\
\end{array} \right.
Now, add the first and third equations
EQU1
which gives that \displaystyle y=\pm \frac{3}{2}. Then, subtracting the first equation from the third,
EQU2
we get
\displaystyle y=\pm \frac{1}{2}. This gives potentially four solutions to the equation system,
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{3}{2} \\
y=\frac{1}{2} \\
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
x=\frac{3}{2} \\
y=-\frac{1}{2} \\
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
x=-\frac{3}{2} \\
y=\frac{1}{2} \\
\end{array} \right.\quad \left\{ \begin{array}{*{35}l}
x=-\frac{3}{2} \\
y=-\frac{1}{2} \\
\end{array} \right.
but only two of these satisfy the second equation
\displaystyle 2xy=-\frac{3}{2}, namely
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{3}{2} \\
y=-\frac{1}{2} \\
\end{array} \right.\quad \quad \text{and}\quad \left\{ \begin{array}{*{35}l}
x=-\frac{3}{2} \\
y=\frac{1}{2} \\
\end{array} \right.
Hence, we have that the solutions are
\displaystyle w=\frac{3-i}{2}
and
\displaystyle w=\frac{-3+i}{2}
or, expressed in
\displaystyle z,
\displaystyle z=2+i
and
\displaystyle z=-1+2i
Because the calculation has been rather long, there is the risk that we have calculated incorrectly somewhere and we therefore check that the solutions satisfy the equation in the exercise:
\displaystyle \begin{align}
& z=2+i:\quad z^{2}-\left( 1+3i \right)z-4+3i=\left( 2+i \right)^{2}-\left( 1+3i \right)\left( 2+i \right)-4+3i \\
& =4+4i+i^{2}-\left( 2+i+6i+3i^{2} \right)-4+3i \\
& =4+4i-1-2-7i+3-4+3i=0 \\
\end{align}
\displaystyle \begin{align} & z=-1+2i:\quad z^{2}-\left( 1+3i \right)z-4+3i=\left( -1+2i \right)^{2}-\left( 1+3i \right)\left( -1+2i \right)-4+3i \\ & =\left( -1 \right)^{2}-4i+4i^{2}-\left( -1+2i-3i+6i^{2} \right)-4+3i \\ & =1-4i-4+1+i+6-4+3i=0 \\ \end{align}