Lösung 3.3:5b
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.3:5b moved to Solution 3.3:5b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Complete the square of the left-hand side: |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & \left( z-\frac{2-i}{2} \right)^{2}-\left( \frac{2-i}{2} \right)^{2}+3-i=0 \\ | ||
+ | & \left( z-\frac{2-i}{2} \right)^{2}-\left( 1-i+\frac{1}{4}i^{2} \right)+3-i=0 \\ | ||
+ | & \left( z-\frac{2-i}{2} \right)^{2}-1+i+\frac{1}{4}+3-i=0 \\ | ||
+ | & \left( z-\frac{2-i}{2} \right)^{2}+\frac{9}{4}=0 \\ | ||
+ | & \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Taking the root then gives that the solutions are | ||
+ | |||
+ | |||
+ | <math>z-\frac{2-i}{2}=\pm \frac{3}{2}i\quad \Leftrightarrow \quad z=\left\{ \begin{array}{*{35}l} | ||
+ | 1+i \\ | ||
+ | 1-2i\text{ } \\ | ||
+ | \end{array} \right.</math> | ||
+ | |||
+ | |||
+ | Finally, we substitute the solutions into the equation and check that it is satisfied: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z=1+i:\quad z^{2}-\left( 2-i \right)z+\left( 3-i \right) \\ | ||
+ | & =\left( 1+i \right)^{2}-\left( 2-i \right)\left( 1+i \right)+3-i \\ | ||
+ | & =1+2i+i^{2}-\left( 2+2i-i-i^{2} \right)+3-i \\ | ||
+ | & =1+2i-1-2-i-1+3-i=0, \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z=1-2i:\quad z^{2}-\left( 2-i \right)z+\left( 3-i \right) \\ | ||
+ | & =\left( 1-2i \right)^{2}-\left( 2-i \right)\left( 1-2i \right)+3-i \\ | ||
+ | & =1-4i+4i^{2}-\left( 2-4i-i+2i^{2} \right)+3-i \\ | ||
+ | & =1-4i-4-2+5i+2+3-i=0. \\ | ||
+ | \end{align}</math> |
Version vom 11:30, 25. Okt. 2008
Complete the square of the left-hand side:
\displaystyle \begin{align}
& \left( z-\frac{2-i}{2} \right)^{2}-\left( \frac{2-i}{2} \right)^{2}+3-i=0 \\
& \left( z-\frac{2-i}{2} \right)^{2}-\left( 1-i+\frac{1}{4}i^{2} \right)+3-i=0 \\
& \left( z-\frac{2-i}{2} \right)^{2}-1+i+\frac{1}{4}+3-i=0 \\
& \left( z-\frac{2-i}{2} \right)^{2}+\frac{9}{4}=0 \\
& \\
\end{align}
Taking the root then gives that the solutions are
\displaystyle z-\frac{2-i}{2}=\pm \frac{3}{2}i\quad \Leftrightarrow \quad z=\left\{ \begin{array}{*{35}l}
1+i \\
1-2i\text{ } \\
\end{array} \right.
Finally, we substitute the solutions into the equation and check that it is satisfied:
\displaystyle \begin{align}
& z=1+i:\quad z^{2}-\left( 2-i \right)z+\left( 3-i \right) \\
& =\left( 1+i \right)^{2}-\left( 2-i \right)\left( 1+i \right)+3-i \\
& =1+2i+i^{2}-\left( 2+2i-i-i^{2} \right)+3-i \\
& =1+2i-1-2-i-1+3-i=0, \\
\end{align}
\displaystyle \begin{align}
& z=1-2i:\quad z^{2}-\left( 2-i \right)z+\left( 3-i \right) \\
& =\left( 1-2i \right)^{2}-\left( 2-i \right)\left( 1-2i \right)+3-i \\
& =1-4i+4i^{2}-\left( 2-4i-i+2i^{2} \right)+3-i \\
& =1-4i-4-2+5i+2+3-i=0. \\
\end{align}