Lösung 3.3:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:3c moved to Solution 3.3:3c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we take the minus sign out in front of the whole expression,
-
<center> [[Image:3_3_3c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>-\left( z^{2}+2iz-4z-1 \right)</math>
 +
 
 +
 
 +
and collect together the first-degree terms,
 +
 
 +
 
 +
<math>-\left( z^{2}+\left( -4+2i \right)z-1 \right)</math>
 +
 
 +
 
 +
we can then complete the square of the expression inside the outer bracket
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& -\left( z^{2}+\left( -4+2i \right)z-1 \right)=-\left( \left( z+\frac{-4+2i}{2} \right)^{2}-\left( \frac{-4+2i}{2} \right)^{2}-1 \right) \\
 +
& =-\left( \left( z-2+i \right)^{2}-\left( -2+i \right)^{2}-1 \right) \\
 +
& =-\left( \left( z-2+i \right)^{2}-\left( -2 \right)^{2}+4i-i^{2}-1 \right) \\
 +
& =-\left( \left( z-2+i \right)^{2}-4+4i+1-1 \right) \\
 +
& =-\left( \left( z-2+i \right)^{2}-4+4i \right) \\
 +
& =-\left( z-2+i \right)^{2}+4-4i. \\
 +
\end{align}</math>

Version vom 08:47, 25. Okt. 2008

If we take the minus sign out in front of the whole expression,


\displaystyle -\left( z^{2}+2iz-4z-1 \right)


and collect together the first-degree terms,


\displaystyle -\left( z^{2}+\left( -4+2i \right)z-1 \right)


we can then complete the square of the expression inside the outer bracket


\displaystyle \begin{align} & -\left( z^{2}+\left( -4+2i \right)z-1 \right)=-\left( \left( z+\frac{-4+2i}{2} \right)^{2}-\left( \frac{-4+2i}{2} \right)^{2}-1 \right) \\ & =-\left( \left( z-2+i \right)^{2}-\left( -2+i \right)^{2}-1 \right) \\ & =-\left( \left( z-2+i \right)^{2}-\left( -2 \right)^{2}+4i-i^{2}-1 \right) \\ & =-\left( \left( z-2+i \right)^{2}-4+4i+1-1 \right) \\ & =-\left( \left( z-2+i \right)^{2}-4+4i \right) \\ & =-\left( z-2+i \right)^{2}+4-4i. \\ \end{align}