Lösung 3.3:2e
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.3:2e moved to Solution 3.3:2e: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | If we treat the expression |
| - | < | + | <math>w=\frac{z+i}{z-i}</math> |
| - | {{ | + | as an unknown, we have the equation |
| - | {{ | + | |
| - | < | + | |
| - | {{ | + | <math>w^{2}=-1</math> |
| + | |||
| + | |||
| + | We know already that this equation has roots | ||
| + | |||
| + | |||
| + | <math>w=\left\{ \begin{array}{*{35}l} | ||
| + | -i \\ | ||
| + | i \\ | ||
| + | \end{array} \right.</math> | ||
| + | |||
| + | |||
| + | so | ||
| + | <math>z\text{ }</math> | ||
| + | should satisfy one of the equation's | ||
| + | |||
| + | |||
| + | <math>\frac{z+i}{z-i}=-i</math> | ||
| + | or | ||
| + | <math>\frac{z+i}{z-i}=i</math> | ||
| + | |||
| + | |||
| + | We solve these equations one by one. | ||
| + | |||
| + | |||
| + | <math>\underline{\underline{\frac{z+i}{z-i}=-i}}</math> | ||
| + | |||
| + | |||
| + | Multiply both sides by | ||
| + | <math>z-i</math>: | ||
| + | |||
| + | |||
| + | <math>z+i=-i\left( z-i \right)</math> | ||
| + | |||
| + | |||
| + | Move all the | ||
| + | <math>z</math> | ||
| + | -terms over to the left-hand side and all the constants to the right-hand side, | ||
| + | |||
| + | |||
| + | <math>z+iz=-1-i</math> | ||
| + | |||
| + | |||
| + | This gives | ||
| + | |||
| + | |||
| + | <math>z=\frac{-1-i}{1+i}=\frac{-\left( 1+i \right)}{1+i}=-1</math> | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <math>\underline{\underline{\frac{z+i}{z-i}=i}}</math> | ||
| + | |||
| + | |||
| + | Multiply both sides by | ||
| + | <math>z-i</math>: | ||
| + | |||
| + | |||
| + | <math>z+i=i\left( z-i \right)</math> | ||
| + | |||
| + | |||
| + | Move all the z-terms over to the left-hand side and all the constants to the right-hand side, | ||
| + | |||
| + | |||
| + | <math>z-iz=1-i</math> | ||
| + | |||
| + | |||
| + | This gives | ||
| + | |||
| + | |||
| + | <math>z=\frac{1-i}{1-i}=1</math> | ||
| + | |||
| + | |||
| + | The solutions are therefore | ||
| + | <math>z=-\text{1}</math> | ||
| + | and | ||
| + | <math>z=\text{1}</math>. | ||
Version vom 11:09, 24. Okt. 2008
If we treat the expression \displaystyle w=\frac{z+i}{z-i} as an unknown, we have the equation
\displaystyle w^{2}=-1
We know already that this equation has roots
\displaystyle w=\left\{ \begin{array}{*{35}l}
-i \\
i \\
\end{array} \right.
so
\displaystyle z\text{ }
should satisfy one of the equation's
\displaystyle \frac{z+i}{z-i}=-i
or
\displaystyle \frac{z+i}{z-i}=i
We solve these equations one by one.
\displaystyle \underline{\underline{\frac{z+i}{z-i}=-i}}
Multiply both sides by
\displaystyle z-i:
\displaystyle z+i=-i\left( z-i \right)
Move all the
\displaystyle z
-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z+iz=-1-i
This gives
\displaystyle z=\frac{-1-i}{1+i}=\frac{-\left( 1+i \right)}{1+i}=-1
\displaystyle \underline{\underline{\frac{z+i}{z-i}=i}}
Multiply both sides by
\displaystyle z-i:
\displaystyle z+i=i\left( z-i \right)
Move all the z-terms over to the left-hand side and all the constants to the right-hand side,
\displaystyle z-iz=1-i
This gives
\displaystyle z=\frac{1-i}{1-i}=1
The solutions are therefore
\displaystyle z=-\text{1}
and
\displaystyle z=\text{1}.
