Lösung 3.3:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:2c moved to Solution 3.3:2c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We write
-
<center> [[Image:3_3_2c-1(2).gif]] </center>
+
<math>z\text{ }</math>
-
{{NAVCONTENT_STOP}}
+
and the right-hand side
-
{{NAVCONTENT_START}}
+
<math>\text{-1-}i</math>
-
<center> [[Image:3_3_2c-2(2).gif]] </center>
+
in polar form
-
{{NAVCONTENT_STOP}}
+
 
 +
 
 +
<math>\begin{align}
 +
& z=r\left( \cos \alpha +i\sin \alpha \right) \\
 +
& \text{-1-}i=\sqrt{2}\left( \cos \frac{5\pi }{4}+i\sin \frac{5\pi }{4} \right) \\
 +
\end{align}</math>
 +
 
 +
 
 +
Using de Moivre's formula, the equation can now be written as
 +
 
 +
 
 +
<math>r^{5}\left( \cos 5\alpha +i\sin 5\alpha \right)=\sqrt{2}\left( \cos \frac{5\pi }{4}+i\sin \frac{5\pi }{4} \right)</math>
 +
 
 +
 
 +
If we identify the magnitude and argument on both sides, we get
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
r^{5}=\sqrt{2} \\
 +
5\alpha =\frac{5\pi }{4}+2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
(The arguments
 +
<math>5\alpha </math>
 +
and
 +
<math>\frac{5\pi }{4}</math>
 +
can differ by a multiple of
 +
<math>2\pi </math>
 +
and still correspond to the same complex number.)
 +
 
 +
This gives that
 +
 
 +
 
 +
<math>\left\{ \begin{array}{*{35}l}
 +
r=\sqrt[5]{2}=\left( 2^{{1}/{2}\;} \right)^{{1}/{5}\;}=2^{{1}/{10}\;} \\
 +
\alpha =\frac{1}{5}\left( \frac{5\pi }{4}+2n\pi \right)=\frac{\pi }{4}+\frac{2n\pi }{5}\quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
If we investigate the argument
 +
<math>\alpha </math>
 +
more closely, we see that it assumes essentially only five different values,
 +
 
 +
 
 +
<math>\frac{\pi }{4},\ \frac{\pi }{4}+\frac{2\pi }{5},\ \frac{\pi }{4}+\frac{4\pi }{5},\ \frac{\pi }{4}+\frac{6\pi }{5}</math>
 +
and
 +
<math>\ \frac{\pi }{4}+\frac{8\pi }{5}</math>
 +
 
 +
 
 +
since these angle values then repeat to within a multiple of
 +
<math>2\pi </math>.
 +
 
 +
In summary, the roots of the equation are
 +
 
 +
 
 +
<math>z=2^{{1}/{10}\;}\left( \cos \left( \frac{\pi }{4}+\frac{2n\pi }{5} \right)+i\sin \left( \frac{\pi }{4}+\frac{2n\pi }{5} \right) \right)</math>
 +
 
 +
 
 +
for
 +
<math>n=0,\ 1,\ 2,\ 3</math>
 +
and
 +
<math>4</math>
 +
 
 +
 
 +
 
[[Image:3_3_2_c.gif|center]]
[[Image:3_3_2_c.gif|center]]

Version vom 10:27, 24. Okt. 2008

We write \displaystyle z\text{ } and the right-hand side \displaystyle \text{-1-}i in polar form


\displaystyle \begin{align} & z=r\left( \cos \alpha +i\sin \alpha \right) \\ & \text{-1-}i=\sqrt{2}\left( \cos \frac{5\pi }{4}+i\sin \frac{5\pi }{4} \right) \\ \end{align}


Using de Moivre's formula, the equation can now be written as


\displaystyle r^{5}\left( \cos 5\alpha +i\sin 5\alpha \right)=\sqrt{2}\left( \cos \frac{5\pi }{4}+i\sin \frac{5\pi }{4} \right)


If we identify the magnitude and argument on both sides, we get


\displaystyle \left\{ \begin{array}{*{35}l} r^{5}=\sqrt{2} \\ 5\alpha =\frac{5\pi }{4}+2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\ \end{array} \right.


(The arguments \displaystyle 5\alpha and \displaystyle \frac{5\pi }{4} can differ by a multiple of \displaystyle 2\pi and still correspond to the same complex number.)

This gives that


\displaystyle \left\{ \begin{array}{*{35}l} r=\sqrt[5]{2}=\left( 2^{{1}/{2}\;} \right)^{{1}/{5}\;}=2^{{1}/{10}\;} \\ \alpha =\frac{1}{5}\left( \frac{5\pi }{4}+2n\pi \right)=\frac{\pi }{4}+\frac{2n\pi }{5}\quad \left( n\text{ an arbitrary integer} \right)\text{ } \\ \end{array} \right.


If we investigate the argument \displaystyle \alpha more closely, we see that it assumes essentially only five different values,


\displaystyle \frac{\pi }{4},\ \frac{\pi }{4}+\frac{2\pi }{5},\ \frac{\pi }{4}+\frac{4\pi }{5},\ \frac{\pi }{4}+\frac{6\pi }{5} and \displaystyle \ \frac{\pi }{4}+\frac{8\pi }{5}


since these angle values then repeat to within a multiple of \displaystyle 2\pi .

In summary, the roots of the equation are


\displaystyle z=2^{{1}/{10}\;}\left( \cos \left( \frac{\pi }{4}+\frac{2n\pi }{5} \right)+i\sin \left( \frac{\pi }{4}+\frac{2n\pi }{5} \right) \right)


for \displaystyle n=0,\ 1,\ 2,\ 3 and \displaystyle 4