Lösung 3.2:6d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.2:6d moved to Solution 3.2:6d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We can determine the number's magnitude directly using the distance formula
-
<center> [[Image:3_2_6d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& \left| \sqrt{10}+\sqrt{30}i \right|=\sqrt{\left( \sqrt{10} \right)^{2}+\left( \sqrt{30} \right)^{2}}=\sqrt{10+30} \\
 +
& =\sqrt{40}=\sqrt{4\centerdot 10}=2\sqrt{10} \\
 +
\end{align}</math>
 +
 
 +
 
 +
In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry.
[[Image:3_2_6_d_bild.gif]] [[Image:3_2_6_d_bildtext.gif]]
[[Image:3_2_6_d_bild.gif]] [[Image:3_2_6_d_bildtext.gif]]
 +
 +
 +
The polar form is
 +
 +
 +
<math>2\sqrt{10}\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)</math>

Version vom 10:30, 23. Okt. 2008

We can determine the number's magnitude directly using the distance formula


\displaystyle \begin{align} & \left| \sqrt{10}+\sqrt{30}i \right|=\sqrt{\left( \sqrt{10} \right)^{2}+\left( \sqrt{30} \right)^{2}}=\sqrt{10+30} \\ & =\sqrt{40}=\sqrt{4\centerdot 10}=2\sqrt{10} \\ \end{align}


In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry.


Image:3_2_6_d_bild.gif Image:3_2_6_d_bildtext.gif


The polar form is


\displaystyle 2\sqrt{10}\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)