Lösung 3.2:6d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.2:6d moved to Solution 3.2:6d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We can determine the number's magnitude directly using the distance formula |
- | + | ||
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & \left| \sqrt{10}+\sqrt{30}i \right|=\sqrt{\left( \sqrt{10} \right)^{2}+\left( \sqrt{30} \right)^{2}}=\sqrt{10+30} \\ | ||
+ | & =\sqrt{40}=\sqrt{4\centerdot 10}=2\sqrt{10} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry. | ||
[[Image:3_2_6_d_bild.gif]] [[Image:3_2_6_d_bildtext.gif]] | [[Image:3_2_6_d_bild.gif]] [[Image:3_2_6_d_bildtext.gif]] | ||
+ | |||
+ | |||
+ | The polar form is | ||
+ | |||
+ | |||
+ | <math>2\sqrt{10}\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)</math> |
Version vom 10:30, 23. Okt. 2008
We can determine the number's magnitude directly using the distance formula
\displaystyle \begin{align}
& \left| \sqrt{10}+\sqrt{30}i \right|=\sqrt{\left( \sqrt{10} \right)^{2}+\left( \sqrt{30} \right)^{2}}=\sqrt{10+30} \\
& =\sqrt{40}=\sqrt{4\centerdot 10}=2\sqrt{10} \\
\end{align}
In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry.
The polar form is
\displaystyle 2\sqrt{10}\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)