Lösung 3.2:5c
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.2:5c moved to Solution 3.2:5c: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | + | Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product | |
| - | < | + | <math>\left( \sqrt{3}+i \right)\left( 1-i \right)</math> |
| - | + | therefore has an argument which is the sum of the argument for the | |
| - | { | + | <math>\sqrt{3}+i</math> |
| - | < | + | and |
| - | {{ | + | <math>1-i</math>, i.e. |
| + | |||
| + | |||
| + | <math>\arg \left( \left( \sqrt{3}+i \right)\left( 1-i \right) \right)=\arg \left( \sqrt{3}+i \right)+\arg \left( 1-i \right)</math> | ||
| + | |||
| + | |||
| + | By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry: | ||
| + | |||
[[Image:3_2_5_c.gif|center]] | [[Image:3_2_5_c.gif|center]] | ||
| + | |||
| + | |||
| + | (Because | ||
| + | <math>1-i</math> | ||
| + | lies in the fourth quadrant, the argument equals | ||
| + | <math>-\beta </math> | ||
| + | and not | ||
| + | <math>\beta </math>.) | ||
| + | |||
| + | Hence, | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \arg \left( \left( \sqrt{3}+i \right)\left( 1-i \right) \right)=\arg \left( \sqrt{3}+i \right)+\arg \left( 1-i \right) \\ | ||
| + | & =\frac{\pi }{6}-\frac{\pi }{4}=-\frac{\pi }{12} \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | NOTE: if you prefer to give the argument between | ||
| + | <math>0</math> | ||
| + | and | ||
| + | <math>2\pi </math>, then the answer is | ||
| + | |||
| + | |||
| + | <math>-\frac{\pi }{12}+2\pi =\frac{-\pi +24\pi }{12}=\frac{23\pi }{12}</math> | ||
Version vom 08:55, 23. Okt. 2008
Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product \displaystyle \left( \sqrt{3}+i \right)\left( 1-i \right) therefore has an argument which is the sum of the argument for the \displaystyle \sqrt{3}+i and \displaystyle 1-i, i.e.
\displaystyle \arg \left( \left( \sqrt{3}+i \right)\left( 1-i \right) \right)=\arg \left( \sqrt{3}+i \right)+\arg \left( 1-i \right)
By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry:
(Because
\displaystyle 1-i
lies in the fourth quadrant, the argument equals
\displaystyle -\beta
and not
\displaystyle \beta .)
Hence,
\displaystyle \begin{align}
& \arg \left( \left( \sqrt{3}+i \right)\left( 1-i \right) \right)=\arg \left( \sqrt{3}+i \right)+\arg \left( 1-i \right) \\
& =\frac{\pi }{6}-\frac{\pi }{4}=-\frac{\pi }{12} \\
\end{align}
NOTE: if you prefer to give the argument between
\displaystyle 0
and
\displaystyle 2\pi , then the answer is
\displaystyle -\frac{\pi }{12}+2\pi =\frac{-\pi +24\pi }{12}=\frac{23\pi }{12}

