Lösung 3.2:5c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.2:5c moved to Solution 3.2:5c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product
-
<center> [[Image:3_2_5c-1(2).gif]] </center>
+
<math>\left( \sqrt{3}+i \right)\left( 1-i \right)</math>
-
{{NAVCONTENT_STOP}}
+
therefore has an argument which is the sum of the argument for the
-
{{NAVCONTENT_START}}
+
<math>\sqrt{3}+i</math>
-
<center> [[Image:3_2_5c-2(2).gif]] </center>
+
and
-
{{NAVCONTENT_STOP}}
+
<math>1-i</math>, i.e.
 +
 
 +
 
 +
<math>\arg \left( \left( \sqrt{3}+i \right)\left( 1-i \right) \right)=\arg \left( \sqrt{3}+i \right)+\arg \left( 1-i \right)</math>
 +
 
 +
 
 +
By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry:
 +
 
[[Image:3_2_5_c.gif|center]]
[[Image:3_2_5_c.gif|center]]
 +
 +
 +
(Because
 +
<math>1-i</math>
 +
lies in the fourth quadrant, the argument equals
 +
<math>-\beta </math>
 +
and not
 +
<math>\beta </math>.)
 +
 +
Hence,
 +
 +
 +
<math>\begin{align}
 +
& \arg \left( \left( \sqrt{3}+i \right)\left( 1-i \right) \right)=\arg \left( \sqrt{3}+i \right)+\arg \left( 1-i \right) \\
 +
& =\frac{\pi }{6}-\frac{\pi }{4}=-\frac{\pi }{12} \\
 +
\end{align}</math>
 +
 +
 +
NOTE: if you prefer to give the argument between
 +
<math>0</math>
 +
and
 +
<math>2\pi </math>, then the answer is
 +
 +
 +
<math>-\frac{\pi }{12}+2\pi =\frac{-\pi +24\pi }{12}=\frac{23\pi }{12}</math>

Version vom 08:55, 23. Okt. 2008

Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product \displaystyle \left( \sqrt{3}+i \right)\left( 1-i \right) therefore has an argument which is the sum of the argument for the \displaystyle \sqrt{3}+i and \displaystyle 1-i, i.e.


\displaystyle \arg \left( \left( \sqrt{3}+i \right)\left( 1-i \right) \right)=\arg \left( \sqrt{3}+i \right)+\arg \left( 1-i \right)


By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry:



(Because \displaystyle 1-i lies in the fourth quadrant, the argument equals \displaystyle -\beta and not \displaystyle \beta .)

Hence,


\displaystyle \begin{align} & \arg \left( \left( \sqrt{3}+i \right)\left( 1-i \right) \right)=\arg \left( \sqrt{3}+i \right)+\arg \left( 1-i \right) \\ & =\frac{\pi }{6}-\frac{\pi }{4}=-\frac{\pi }{12} \\ \end{align}


NOTE: if you prefer to give the argument between \displaystyle 0 and \displaystyle 2\pi , then the answer is


\displaystyle -\frac{\pi }{12}+2\pi =\frac{-\pi +24\pi }{12}=\frac{23\pi }{12}