Lösung 3.2:4a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.2:4a moved to Solution 3.2:4a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The magnitude of the number
-
<center> [[Image:3_2_4a.gif]] </center>
+
<math>\text{3}+\text{4}i</math>
-
{{NAVCONTENT_STOP}}
+
is the number's distance to the origin in the complex number plane.
 +
 
 +
If we treat the line from the origin to
 +
<math>\text{3}+\text{4}i</math>
 +
as the hypotenuse in a right-angled triangle which has its sides parallel with the real and imaginary axes, then Pythagoras' theorem gives that the magnitude is
 +
 
 +
 
 +
<math>\left| \text{3}+\text{4}i \right|=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5</math>
 +
 
[[Image:3_2_4_a.gif|center]]
[[Image:3_2_4_a.gif|center]]
 +
 +
NOTE: In general, the magnitude of a complex number
 +
<math>z=x+iy</math>
 +
is equal to
 +
 +
 +
<math>\left| z \right|=\left| x+iy \right|=\sqrt{x^{2}+y^{2}}</math>

Version vom 15:19, 22. Okt. 2008

The magnitude of the number \displaystyle \text{3}+\text{4}i is the number's distance to the origin in the complex number plane.

If we treat the line from the origin to \displaystyle \text{3}+\text{4}i as the hypotenuse in a right-angled triangle which has its sides parallel with the real and imaginary axes, then Pythagoras' theorem gives that the magnitude is


\displaystyle \left| \text{3}+\text{4}i \right|=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5


NOTE: In general, the magnitude of a complex number \displaystyle z=x+iy is equal to


\displaystyle \left| z \right|=\left| x+iy \right|=\sqrt{x^{2}+y^{2}}