Lösung 2.3:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.3:2c moved to Solution 2.3:2c: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | If we use the definition of |
| - | < | + | <math>\tan x</math> |
| - | {{ | + | and write the integral as |
| + | |||
| + | |||
| + | <math>\int{\tan x\,dx}=\int{\frac{\sin x}{\cos x}\,dx}</math> | ||
| + | |||
| + | |||
| + | we see that the numerator | ||
| + | <math>\sin x</math> | ||
| + | is the derivative of the denominator (apart from the minus sign). Hence, the substitution | ||
| + | <math>u=\cos x</math> | ||
| + | will work, | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \int{\frac{\sin x}{\cos x}\,dx}=\left\{ \begin{matrix} | ||
| + | u=\cos x \\ | ||
| + | du=\left( \cos x \right)^{\prime }\,dx=-\sin x\,dx \\ | ||
| + | \end{matrix} \right\} \\ | ||
| + | & =-\int{\frac{\,du}{u}}=-\ln \left| u \right|+C=-\ln \left| \cos x \right|+C \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | NOTE: | ||
| + | <math>-\ln \left| \cos x \right|+C</math> | ||
| + | is only a primitive function in intervals in which | ||
| + | <math>\cos x\ne 0</math>. | ||
Version vom 14:16, 22. Okt. 2008
If we use the definition of \displaystyle \tan x and write the integral as
\displaystyle \int{\tan x\,dx}=\int{\frac{\sin x}{\cos x}\,dx}
we see that the numerator
\displaystyle \sin x
is the derivative of the denominator (apart from the minus sign). Hence, the substitution
\displaystyle u=\cos x
will work,
\displaystyle \begin{align}
& \int{\frac{\sin x}{\cos x}\,dx}=\left\{ \begin{matrix}
u=\cos x \\
du=\left( \cos x \right)^{\prime }\,dx=-\sin x\,dx \\
\end{matrix} \right\} \\
& =-\int{\frac{\,du}{u}}=-\ln \left| u \right|+C=-\ln \left| \cos x \right|+C \\
\end{align}
NOTE:
\displaystyle -\ln \left| \cos x \right|+C
is only a primitive function in intervals in which
\displaystyle \cos x\ne 0.
