Lösung 2.3:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:2c moved to Solution 2.3:2c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we use the definition of
-
<center> [[Image:2_3_2c.gif]] </center>
+
<math>\tan x</math>
-
{{NAVCONTENT_STOP}}
+
and write the integral as
 +
 
 +
 
 +
<math>\int{\tan x\,dx}=\int{\frac{\sin x}{\cos x}\,dx}</math>
 +
 
 +
 
 +
we see that the numerator
 +
<math>\sin x</math>
 +
is the derivative of the denominator (apart from the minus sign). Hence, the substitution
 +
<math>u=\cos x</math>
 +
will work,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{\frac{\sin x}{\cos x}\,dx}=\left\{ \begin{matrix}
 +
u=\cos x \\
 +
du=\left( \cos x \right)^{\prime }\,dx=-\sin x\,dx \\
 +
\end{matrix} \right\} \\
 +
& =-\int{\frac{\,du}{u}}=-\ln \left| u \right|+C=-\ln \left| \cos x \right|+C \\
 +
\end{align}</math>
 +
 
 +
 
 +
NOTE:
 +
<math>-\ln \left| \cos x \right|+C</math>
 +
is only a primitive function in intervals in which
 +
<math>\cos x\ne 0</math>.

Version vom 14:16, 22. Okt. 2008

If we use the definition of \displaystyle \tan x and write the integral as


\displaystyle \int{\tan x\,dx}=\int{\frac{\sin x}{\cos x}\,dx}


we see that the numerator \displaystyle \sin x is the derivative of the denominator (apart from the minus sign). Hence, the substitution \displaystyle u=\cos x will work,


\displaystyle \begin{align} & \int{\frac{\sin x}{\cos x}\,dx}=\left\{ \begin{matrix} u=\cos x \\ du=\left( \cos x \right)^{\prime }\,dx=-\sin x\,dx \\ \end{matrix} \right\} \\ & =-\int{\frac{\,du}{u}}=-\ln \left| u \right|+C=-\ln \left| \cos x \right|+C \\ \end{align}


NOTE: \displaystyle -\ln \left| \cos x \right|+C is only a primitive function in intervals in which \displaystyle \cos x\ne 0.